Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_99_3_a4, author = {I. D. Kan}, title = {Inversion of the {Cauchy--Bunyakovskii--Schwarz} {Inequality}}, journal = {Matemati\v{c}eskie zametki}, pages = {361--365}, publisher = {mathdoc}, volume = {99}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a4/} }
I. D. Kan. Inversion of the Cauchy--Bunyakovskii--Schwarz Inequality. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 361-365. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a4/
[1] I. D. Kan, D. A. Frolenkov, “Usilenie teoremy Burgeina–Kontorovicha”, Izv. RAN. Ser. matem., 78:2 (2014), 87–144 | DOI | MR | Zbl
[2] D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich II”, Mosc. J. Comb. Number Theory, 4:1 (2014), 78–117 | MR | Zbl
[3] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. III”, Izv. RAN. Ser. matem., 79:2 (2015), 77–100 | DOI | MR | Zbl
[4] S. Huang, An Improvement on Zaremba's Conjecture, 2013, arXiv: 1303.3772v1
[5] S. V. Konyagin, “Otsenki trigonometricheskikh summ po podgruppam i summ Gaussa”, IV Mezhdunarodnaya konferentsiya “Sovremennye problemy teorii chisel i ee prilozheniya”, posvyaschennaya 180-letiyu P. L. Chebysheva i 110-letiyu I. M. Vinogradova: Aktualnye problemy, Ch. III (Tula, 2001), MGU, M., 2002, 86–114