@article{MZM_2016_99_3_a4,
author = {I. D. Kan},
title = {Inversion of the {Cauchy{\textendash}Bunyakovskii{\textendash}Schwarz} {Inequality}},
journal = {Matemati\v{c}eskie zametki},
pages = {361--365},
year = {2016},
volume = {99},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a4/}
}
I. D. Kan. Inversion of the Cauchy–Bunyakovskii–Schwarz Inequality. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 361-365. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a4/
[1] I. D. Kan, D. A. Frolenkov, “Usilenie teoremy Burgeina–Kontorovicha”, Izv. RAN. Ser. matem., 78:2 (2014), 87–144 | DOI | MR | Zbl
[2] D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich II”, Mosc. J. Comb. Number Theory, 4:1 (2014), 78–117 | MR | Zbl
[3] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. III”, Izv. RAN. Ser. matem., 79:2 (2015), 77–100 | DOI | MR | Zbl
[4] S. Huang, An Improvement on Zaremba's Conjecture, 2013, arXiv: 1303.3772v1
[5] S. V. Konyagin, “Otsenki trigonometricheskikh summ po podgruppam i summ Gaussa”, IV Mezhdunarodnaya konferentsiya “Sovremennye problemy teorii chisel i ee prilozheniya”, posvyaschennaya 180-letiyu P. L. Chebysheva i 110-letiyu I. M. Vinogradova: Aktualnye problemy, Ch. III (Tula, 2001), MGU, M., 2002, 86–114