Composition Operators of Convolution and Multiplication by a Function
Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 350-360

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an operator which is the composition of the convolution operator and the operator of multiplication by a fixed entire function. Such operators find applications in the Fisher expansion problem, the Cauchy problem for convolution operators, etc.
Keywords: Dunkl operator, convolution operator, operator of multiplication by a function.
Mots-clés : composition
@article{MZM_2016_99_3_a3,
     author = {K. R. Zabirova and V. V. Napalkov},
     title = {Composition {Operators} of {Convolution} and {Multiplication} by a {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {350--360},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a3/}
}
TY  - JOUR
AU  - K. R. Zabirova
AU  - V. V. Napalkov
TI  - Composition Operators of Convolution and Multiplication by a Function
JO  - Matematičeskie zametki
PY  - 2016
SP  - 350
EP  - 360
VL  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a3/
LA  - ru
ID  - MZM_2016_99_3_a3
ER  - 
%0 Journal Article
%A K. R. Zabirova
%A V. V. Napalkov
%T Composition Operators of Convolution and Multiplication by a Function
%J Matematičeskie zametki
%D 2016
%P 350-360
%V 99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a3/
%G ru
%F MZM_2016_99_3_a3
K. R. Zabirova; V. V. Napalkov. Composition Operators of Convolution and Multiplication by a Function. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 350-360. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a3/