Composition Operators of Convolution and Multiplication by a Function
Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 350-360.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an operator which is the composition of the convolution operator and the operator of multiplication by a fixed entire function. Such operators find applications in the Fisher expansion problem, the Cauchy problem for convolution operators, etc.
Keywords: Dunkl operator, convolution operator, operator of multiplication by a function.
Mots-clés : composition
@article{MZM_2016_99_3_a3,
     author = {K. R. Zabirova and V. V. Napalkov},
     title = {Composition {Operators} of {Convolution} and {Multiplication} by a {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {350--360},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a3/}
}
TY  - JOUR
AU  - K. R. Zabirova
AU  - V. V. Napalkov
TI  - Composition Operators of Convolution and Multiplication by a Function
JO  - Matematičeskie zametki
PY  - 2016
SP  - 350
EP  - 360
VL  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a3/
LA  - ru
ID  - MZM_2016_99_3_a3
ER  - 
%0 Journal Article
%A K. R. Zabirova
%A V. V. Napalkov
%T Composition Operators of Convolution and Multiplication by a Function
%J Matematičeskie zametki
%D 2016
%P 350-360
%V 99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a3/
%G ru
%F MZM_2016_99_3_a3
K. R. Zabirova; V. V. Napalkov. Composition Operators of Convolution and Multiplication by a Function. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 350-360. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a3/

[1] Zh. Sebastyan-i-Silva, “O nekotorykh klassakh lokalno-vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Cb. per. Matematika, 1 (1957), 60–77

[2] C. F. Dunkl, “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl

[3] L. Lapointe, L. Vinet, “Exact operator solution of the Calogero–Sutherland model”, Comm. Math. Phys., 178:2 (1996), 425–452 | DOI | MR | Zbl

[4] A. P. Veselov, “Kvantovaya zadacha Kalodzhero, uravnenie Knizhnika–Zamolodchikova i printsip Gyuigensa”, TMF, 98:3 (1994), 524–535 | MR | Zbl

[5] J. J. Betancor, M. Sifi, K Trimèche, “Hypercyclic and chaotic convolution operators associated with the Dunkl operators on $\mathbb C$”, Acta Math. Hungar., 106:1-2 (2005), 101–116 | DOI | MR | Zbl

[6] L. D. Abreu, O. Ciaurri, J. L. Varona, “The spectrum of the right inverse of the Dunkl operator”, Rev. Mat. Complut., 26:2 (2013), 471–483 | DOI | MR

[7] V. E. Kim, V. V. Napalkov, “Obobschenie operatora Dankla na prostranstve tselykh funktsii”, Dokl. RAN, 420:2 (2008), 166–167 | MR | Zbl

[8] V. V. Napalkov, A. A. Nuyatov, “Mnogotochechnaya zadacha Valle Pussena dlya operatorov svertki”, Matem. sb., 203:2 (2012), 77–86 | DOI | MR | Zbl

[9] V. V. Napalkov, V. V. Napalkov (ml.), “Operatory Dankla kak operatory svertki”, Dokl. RAN, 423:3 (2008), 300–302 | MR | Zbl

[10] V. V. Napalkov, Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR | Zbl

[11] Zh. Dedonne, L. Shvarts, “Dvoistvennost v prostranstvakh (F) i (LF)”, Cb. per. Matematika, 2:2 (1958), 77–107

[12] K. R. Zabirova, V. V. Napalkov, “Operatory svertki Dankla i mnogotochechnaya zadacha Valle–Pussena”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(30) (2013), 70–81 | DOI

[13] H. Muggli, “Differentialgleichungen unendlich hoher Ordnung mit konstanten Koeffizienten”, Comment. Math. Helv., 11:1 (1938), 151–179 | MR | Zbl

[14] O. V. Epifanov, “O suschestvovanii nepreryvnogo pravogo obratnogo v odnom klasse lokalno vypuklykh prostranstv”, Izv. Sev.-Kavkazsk. nauchn. tsentra vyssh. shkoly. Ser. Estestvennykh nauk, 1991, no. 3, 3–4 | MR | Zbl