Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_99_3_a18, author = {F. M. Mukhamedov and M. A. Mukhamedov}, title = {Ergodicity {Coefficient} and {Ergodic} {Properties} of {Inhomogeneous} {Markov} {Chains} in {Ordered} {Normed} {Spaces} with {a~Base}}, journal = {Matemati\v{c}eskie zametki}, pages = {477--480}, publisher = {mathdoc}, volume = {99}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a18/} }
TY - JOUR AU - F. M. Mukhamedov AU - M. A. Mukhamedov TI - Ergodicity Coefficient and Ergodic Properties of Inhomogeneous Markov Chains in Ordered Normed Spaces with a~Base JO - Matematičeskie zametki PY - 2016 SP - 477 EP - 480 VL - 99 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a18/ LA - ru ID - MZM_2016_99_3_a18 ER -
%0 Journal Article %A F. M. Mukhamedov %A M. A. Mukhamedov %T Ergodicity Coefficient and Ergodic Properties of Inhomogeneous Markov Chains in Ordered Normed Spaces with a~Base %J Matematičeskie zametki %D 2016 %P 477-480 %V 99 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a18/ %G ru %F MZM_2016_99_3_a18
F. M. Mukhamedov; M. A. Mukhamedov. Ergodicity Coefficient and Ergodic Properties of Inhomogeneous Markov Chains in Ordered Normed Spaces with a~Base. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 477-480. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a18/
[1] U. Krengel, Ergodic Theorems, De Gruyter Stud. Math., 6, Walter de Gruyter, Berlin–New York, 1985 | MR | Zbl
[2] E. M. Alfsen, Compact Convex Sets and Boundary Integrals, Ergeb. Math. Grenzgeb., 57, Springer-Verlag, Berlin, 1971 | MR | Zbl
[3] E. Yu. Emel'yanov, M. P. H. Wolff, Positivity, 7:1-2 (2003), 3–22 | DOI | MR | Zbl
[4] T. A. Sarymsakov, N. P. Zimakov, Dokl. AN SSSR, 289:3 (1986), 554–558 | MR
[5] R. L. Dobrushin, TVP, 1 (1956), 72–89 | Zbl
[6] I. C. F. Ipsen, T. M. Salee, SIAM J. Matrix Anal. Appl., 32:1 (2011), 153–200 | DOI | MR | Zbl
[7] W. Doeblin, Publ. Fac. Sci. Univ. Masaryk, 236 (1937), 3–13 | Zbl
[8] C. C. Y. Dorea, A. G. C. Pereira, Acta Math. Hungar., 110:4 (2006), 287–292 | DOI | MR | Zbl
[9] F. Mukhamedov, Banach J. Math. Anal., 7:2 (2013), 53–73 | MR | Zbl
[10] T. A. Sarymsakov, G. Ya. Grabarnik, Dokl. AN UzSSR, 1987, no. 5, 9–11 | MR | Zbl