Ergodicity Coefficient and Ergodic Properties of Inhomogeneous Markov Chains in Ordered Normed Spaces with a~Base
Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 477-480.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: ergodicity, ordered normed space, inhomogeneous Markov chain.
@article{MZM_2016_99_3_a18,
     author = {F. M. Mukhamedov and M. A. Mukhamedov},
     title = {Ergodicity {Coefficient} and {Ergodic} {Properties} of {Inhomogeneous} {Markov} {Chains} in {Ordered} {Normed} {Spaces} with {a~Base}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {477--480},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a18/}
}
TY  - JOUR
AU  - F. M. Mukhamedov
AU  - M. A. Mukhamedov
TI  - Ergodicity Coefficient and Ergodic Properties of Inhomogeneous Markov Chains in Ordered Normed Spaces with a~Base
JO  - Matematičeskie zametki
PY  - 2016
SP  - 477
EP  - 480
VL  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a18/
LA  - ru
ID  - MZM_2016_99_3_a18
ER  - 
%0 Journal Article
%A F. M. Mukhamedov
%A M. A. Mukhamedov
%T Ergodicity Coefficient and Ergodic Properties of Inhomogeneous Markov Chains in Ordered Normed Spaces with a~Base
%J Matematičeskie zametki
%D 2016
%P 477-480
%V 99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a18/
%G ru
%F MZM_2016_99_3_a18
F. M. Mukhamedov; M. A. Mukhamedov. Ergodicity Coefficient and Ergodic Properties of Inhomogeneous Markov Chains in Ordered Normed Spaces with a~Base. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 477-480. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a18/

[1] U. Krengel, Ergodic Theorems, De Gruyter Stud. Math., 6, Walter de Gruyter, Berlin–New York, 1985 | MR | Zbl

[2] E. M. Alfsen, Compact Convex Sets and Boundary Integrals, Ergeb. Math. Grenzgeb., 57, Springer-Verlag, Berlin, 1971 | MR | Zbl

[3] E. Yu. Emel'yanov, M. P. H. Wolff, Positivity, 7:1-2 (2003), 3–22 | DOI | MR | Zbl

[4] T. A. Sarymsakov, N. P. Zimakov, Dokl. AN SSSR, 289:3 (1986), 554–558 | MR

[5] R. L. Dobrushin, TVP, 1 (1956), 72–89 | Zbl

[6] I. C. F. Ipsen, T. M. Salee, SIAM J. Matrix Anal. Appl., 32:1 (2011), 153–200 | DOI | MR | Zbl

[7] W. Doeblin, Publ. Fac. Sci. Univ. Masaryk, 236 (1937), 3–13 | Zbl

[8] C. C. Y. Dorea, A. G. C. Pereira, Acta Math. Hungar., 110:4 (2006), 287–292 | DOI | MR | Zbl

[9] F. Mukhamedov, Banach J. Math. Anal., 7:2 (2013), 53–73 | MR | Zbl

[10] T. A. Sarymsakov, G. Ya. Grabarnik, Dokl. AN UzSSR, 1987, no. 5, 9–11 | MR | Zbl