On Multilayer Films on the Boundary of a Half-Space
Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 421-427.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalized boundary conditions on multilayer films bounding a half-space and consisting of alternating infinitely thin strongly and weakly permeable layers are derived. The solution of the problem for the Laplace equation in a half-plane $D$ bounded by a three-layer film is expressed in simple quadratures in terms of the solution of the classical Dirichlet problem in $D$ without a film.
Mots-clés : Laplace equation
Keywords: multilayer film, three-layer film, Dirichlet problem.
@article{MZM_2016_99_3_a11,
     author = {S. E. Kholodovskii},
     title = {On {Multilayer} {Films} on the {Boundary} of a {Half-Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {421--427},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a11/}
}
TY  - JOUR
AU  - S. E. Kholodovskii
TI  - On Multilayer Films on the Boundary of a Half-Space
JO  - Matematičeskie zametki
PY  - 2016
SP  - 421
EP  - 427
VL  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a11/
LA  - ru
ID  - MZM_2016_99_3_a11
ER  - 
%0 Journal Article
%A S. E. Kholodovskii
%T On Multilayer Films on the Boundary of a Half-Space
%J Matematičeskie zametki
%D 2016
%P 421-427
%V 99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a11/
%G ru
%F MZM_2016_99_3_a11
S. E. Kholodovskii. On Multilayer Films on the Boundary of a Half-Space. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 421-427. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a11/

[1] D. A. Nomirovskii, “Obobschennaya razreshimost parabolicheskikh sistem s neodnorodnymi usloviyami sopryazheniya tipa neidealnogo kontakta”, Differents. uravneniya, 40:10 (2004), 1390–1399 | MR | Zbl

[2] S. E. Kholodovskii, “Metod svertyvaniya razlozhenii Fure v reshenii kraevykh zadach s peresekayuschimisya liniyami sopryazheniya”, Zh. vychisl. matem. i matem. fiz., 47:9 (2007), 1550–1556 | MR

[3] S. E. Kholodovskii, “Metod svertyvaniya razlozhenii Fure. Sluchai obobschennykh uslovii sopryazheniya tipa treschiny (zavesy) v kusochno-neodnorodnykh sredakh”, Differents. uravneniya, 45:6 (2009), 855–859 | MR

[4] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl

[5] S. E. Kholodovskii, “Ob effektivnom reshenii zadachi o dvizhenii neogranichennoi struny s tochechnoi massoi”, Zh. vychisl. matem. i matem. fiz., 55:1 (2015), 105–112 | DOI | MR | Zbl

[6] L. D. Kudryavtsev, Matematicheskii analiz, T. 2, Vysshaya shkola, M., 1973 | Zbl