On the Properties of Topological Entropy on a Compact Family of Maps
Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 333-341
Cet article a éte moissonné depuis la source Math-Net.Ru
The properties of topological entropy as a function on a compact family of maps of a compact metric space are studied.
Keywords:
topological entropy, family of maps, compact metric space, Baire class one function, Baire class two function, lower semicontinuous function, Baire typical point
Mots-clés : Ascoli–Arzelà theorem, Hölder condition.
Mots-clés : Ascoli–Arzelà theorem, Hölder condition.
@article{MZM_2016_99_3_a1,
author = {A. N. Vetokhin},
title = {On the {Properties} of {Topological} {Entropy} on a {Compact} {Family} of {Maps}},
journal = {Matemati\v{c}eskie zametki},
pages = {333--341},
year = {2016},
volume = {99},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a1/}
}
A. N. Vetokhin. On the Properties of Topological Entropy on a Compact Family of Maps. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 333-341. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a1/
[1] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR | Zbl
[2] A. N. Vetokhin, “O nekotorykh svoistvakh topologicheskoi entropii dinamicheskikh sistem”, Matem. zametki, 93:3 (2013), 347–356 | DOI | MR | Zbl
[3] R. Ber, Teoriya razryvnykh funktsii, Gostekhizdat, M., 1932 | MR | Zbl
[4] A. N. Vetokhin, “O nekotorykh svoistvakh topologicheskoi entropii otobrazhenii, udovletvoryayuschikh obobschennomu usloviyu Geldera”, Differents. uravneniya, 50:8 (2014), 1139–1140
[5] F. Khausdorf, Teoriya mnozhestv, ONTI, M., 1937 | Zbl
[6] K. Kuratovskii, Topologiya, T. 1, Mir, M., 1966 | MR | Zbl