On the Properties of Topological Entropy on a Compact Family of Maps
Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 333-341.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of topological entropy as a function on a compact family of maps of a compact metric space are studied.
Keywords: topological entropy, family of maps, compact metric space, Baire class one function, Baire class two function, lower semicontinuous function, Baire typical point, Ascoli–Arzelà theorem, Hölder condition.
@article{MZM_2016_99_3_a1,
     author = {A. N. Vetokhin},
     title = {On the {Properties} of {Topological} {Entropy} on a {Compact} {Family} of {Maps}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {333--341},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a1/}
}
TY  - JOUR
AU  - A. N. Vetokhin
TI  - On the Properties of Topological Entropy on a Compact Family of Maps
JO  - Matematičeskie zametki
PY  - 2016
SP  - 333
EP  - 341
VL  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a1/
LA  - ru
ID  - MZM_2016_99_3_a1
ER  - 
%0 Journal Article
%A A. N. Vetokhin
%T On the Properties of Topological Entropy on a Compact Family of Maps
%J Matematičeskie zametki
%D 2016
%P 333-341
%V 99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a1/
%G ru
%F MZM_2016_99_3_a1
A. N. Vetokhin. On the Properties of Topological Entropy on a Compact Family of Maps. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 333-341. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a1/

[1] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR | Zbl

[2] A. N. Vetokhin, “O nekotorykh svoistvakh topologicheskoi entropii dinamicheskikh sistem”, Matem. zametki, 93:3 (2013), 347–356 | DOI | MR | Zbl

[3] R. Ber, Teoriya razryvnykh funktsii, Gostekhizdat, M., 1932 | MR | Zbl

[4] A. N. Vetokhin, “O nekotorykh svoistvakh topologicheskoi entropii otobrazhenii, udovletvoryayuschikh obobschennomu usloviyu Geldera”, Differents. uravneniya, 50:8 (2014), 1139–1140

[5] F. Khausdorf, Teoriya mnozhestv, ONTI, M., 1937 | Zbl

[6] K. Kuratovskii, Topologiya, T. 1, Mir, M., 1966 | MR | Zbl