Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_99_3_a0, author = {O. G. Avsyankin}, title = {$C^*${-Algebra} of {Integral} {Operators} with {Homogeneous} {Kernels} and {Oscillating} {Coefficients}}, journal = {Matemati\v{c}eskie zametki}, pages = {323--332}, publisher = {mathdoc}, volume = {99}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a0/} }
O. G. Avsyankin. $C^*$-Algebra of Integral Operators with Homogeneous Kernels and Oscillating Coefficients. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 323-332. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a0/
[1] N. Karapetiants, S. Samko, Equations with Involutive Operators, Birkhäuser, Boston, MA, 2001 | MR | Zbl
[2] O. G. Avsyankin, N. K. Karapetyants, “Mnogomernye integralnye operatory s odnorodnymi stepeni $-n$ yadrami”, Dokl. RAN, 368:6 (1999), 727–729 | MR | Zbl
[3] O. G. Avsyankin, N. K. Karapetyants, “Proektsionnyi metod v teorii integralnykh operatorov s odnorodnymi yadrami”, Matem. zametki, 75:2 (2004), 163–172 | DOI | MR | Zbl
[4] O. G. Avsyankin, “O mnogomernykh integralnykh operatorakh s odnorodnymi yadrami i ostsilliruyuschimi radialnymi koeffitsientami”, Differents. uravneniya, 43:9 (2007), 1193–1196 | MR | Zbl
[5] O. G. Avsyankin, “O $C^*$-algebre, porozhdennoi mnogomernymi integralnymi operatorami s odnorodnymi yadrami i operatorami multiplikativnogo sdviga”, Dokl. RAN, 419:6 (2008), 727–728 | MR | Zbl
[6] O. G. Avsyankin, “Ob algebre mnogomernykh integralnykh operatorov s odnorodno-raznostnymi yadrami”, Matem. zametki, 95:2 (2014), 163–169 | DOI | Zbl
[7] A. B. Antonevich, Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Izd-vo “Universitetskoe”, Minsk, 1988 | MR | Zbl
[8] O. G. Avsyankin, “O $C^*$-algebre, porozhdennoi operatorami multiplikativnoi diskretnoi svertki s ostsilliruyuschimi koeffitsientami”, Sib. matem. zhurn., 55:6 (2014), 1199–1207 | MR | Zbl
[9] Dzh. Merfi, $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997 | MR | Zbl