$C^*$-Algebra of Integral Operators with Homogeneous Kernels and Oscillating Coefficients
Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 323-332.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the $C^*$-algebra generated by multidimensional integral operators with $(-n)$th-order homogeneous kernels and by the operators of multiplication by oscillating coefficients of the form $|x|^{i\alpha}$. For this algebra, we construct an operator symbolic calculus and obtain necessary and sufficient conditions for the Fredholm property of an operator in terms of this calculus.
Keywords: integral operator, $C^*$-algebra, operator with oscillating coefficients, symbolic calculus, Fredholm property
Mots-clés : index formula.
@article{MZM_2016_99_3_a0,
     author = {O. G. Avsyankin},
     title = {$C^*${-Algebra} of {Integral} {Operators} with {Homogeneous} {Kernels} and {Oscillating} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--332},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a0/}
}
TY  - JOUR
AU  - O. G. Avsyankin
TI  - $C^*$-Algebra of Integral Operators with Homogeneous Kernels and Oscillating Coefficients
JO  - Matematičeskie zametki
PY  - 2016
SP  - 323
EP  - 332
VL  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a0/
LA  - ru
ID  - MZM_2016_99_3_a0
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%T $C^*$-Algebra of Integral Operators with Homogeneous Kernels and Oscillating Coefficients
%J Matematičeskie zametki
%D 2016
%P 323-332
%V 99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a0/
%G ru
%F MZM_2016_99_3_a0
O. G. Avsyankin. $C^*$-Algebra of Integral Operators with Homogeneous Kernels and Oscillating Coefficients. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 323-332. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a0/

[1] N. Karapetiants, S. Samko, Equations with Involutive Operators, Birkhäuser, Boston, MA, 2001 | MR | Zbl

[2] O. G. Avsyankin, N. K. Karapetyants, “Mnogomernye integralnye operatory s odnorodnymi stepeni $-n$ yadrami”, Dokl. RAN, 368:6 (1999), 727–729 | MR | Zbl

[3] O. G. Avsyankin, N. K. Karapetyants, “Proektsionnyi metod v teorii integralnykh operatorov s odnorodnymi yadrami”, Matem. zametki, 75:2 (2004), 163–172 | DOI | MR | Zbl

[4] O. G. Avsyankin, “O mnogomernykh integralnykh operatorakh s odnorodnymi yadrami i ostsilliruyuschimi radialnymi koeffitsientami”, Differents. uravneniya, 43:9 (2007), 1193–1196 | MR | Zbl

[5] O. G. Avsyankin, “O $C^*$-algebre, porozhdennoi mnogomernymi integralnymi operatorami s odnorodnymi yadrami i operatorami multiplikativnogo sdviga”, Dokl. RAN, 419:6 (2008), 727–728 | MR | Zbl

[6] O. G. Avsyankin, “Ob algebre mnogomernykh integralnykh operatorov s odnorodno-raznostnymi yadrami”, Matem. zametki, 95:2 (2014), 163–169 | DOI | Zbl

[7] A. B. Antonevich, Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Izd-vo “Universitetskoe”, Minsk, 1988 | MR | Zbl

[8] O. G. Avsyankin, “O $C^*$-algebre, porozhdennoi operatorami multiplikativnoi diskretnoi svertki s ostsilliruyuschimi koeffitsientami”, Sib. matem. zhurn., 55:6 (2014), 1199–1207 | MR | Zbl

[9] Dzh. Merfi, $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997 | MR | Zbl