On a Generalization of the Entropy Inequality
Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 278-282.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, the classical entropy inequality is generalized. To this end, a sharp integral inequality is proved.
Keywords: entropy inequality, integral inequality, Euler gamma-function, Euler beta-function, Hölder's inequality.
@article{MZM_2016_99_2_a9,
     author = {Sh. M. Nasibov},
     title = {On a {Generalization} of the {Entropy} {Inequality}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {278--282},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a9/}
}
TY  - JOUR
AU  - Sh. M. Nasibov
TI  - On a Generalization of the Entropy Inequality
JO  - Matematičeskie zametki
PY  - 2016
SP  - 278
EP  - 282
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a9/
LA  - ru
ID  - MZM_2016_99_2_a9
ER  - 
%0 Journal Article
%A Sh. M. Nasibov
%T On a Generalization of the Entropy Inequality
%J Matematičeskie zametki
%D 2016
%P 278-282
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a9/
%G ru
%F MZM_2016_99_2_a9
Sh. M. Nasibov. On a Generalization of the Entropy Inequality. Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 278-282. http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a9/

[1] I. I. Hirschman, Jr., “A note on entropy”, Amer. J. Math., 79:1 (1957), 152–156 | DOI | MR | Zbl

[2] Sh. M. Nasibov, “Ob optimalnykh konstantakh v nekotorykh neravenstvakh Soboleva i ikh prilozhenie k nelineinomu uravneniyu Shredingera”, Dokl. AN SSSR, 307:3 (1989), 538–542 | MR

[3] Sh. M. Nasibov, “Ob odnom integralnom neravenstve i ego primenenii k dokazatelstvu neravenstva entropii”, Matem. zametki, 84:2 (2008), 231–237 | DOI | MR | Zbl