On a Generalization of the Entropy Inequality
Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 278-282
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present paper, the classical entropy inequality is generalized. To this end, a sharp integral inequality is proved.
Keywords:
entropy inequality, integral inequality, Euler gamma-function, Euler beta-function
Mots-clés : Hölder's inequality.
Mots-clés : Hölder's inequality.
@article{MZM_2016_99_2_a9,
author = {Sh. M. Nasibov},
title = {On a {Generalization} of the {Entropy} {Inequality}},
journal = {Matemati\v{c}eskie zametki},
pages = {278--282},
year = {2016},
volume = {99},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a9/}
}
Sh. M. Nasibov. On a Generalization of the Entropy Inequality. Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 278-282. http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a9/
[1] I. I. Hirschman, Jr., “A note on entropy”, Amer. J. Math., 79:1 (1957), 152–156 | DOI | MR | Zbl
[2] Sh. M. Nasibov, “Ob optimalnykh konstantakh v nekotorykh neravenstvakh Soboleva i ikh prilozhenie k nelineinomu uravneniyu Shredingera”, Dokl. AN SSSR, 307:3 (1989), 538–542 | MR
[3] Sh. M. Nasibov, “Ob odnom integralnom neravenstve i ego primenenii k dokazatelstvu neravenstva entropii”, Matem. zametki, 84:2 (2008), 231–237 | DOI | MR | Zbl