On the Deficiency Index of the Vector-Valued Sturm--Liouville Operator
Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 262-277

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb R_+:=[0,+\infty)$, and let the matrix functions $P$, $Q$, and $R$ of order $n$, $n\in\mathbb N$, defined on the semiaxis $\mathbb R_+$ be such that $P(x)$ is a nondegenerate matrix, $P(x)$ and $Q(x)$ are Hermitian matrices for $x\in\mathbb R_+$ and the elements of the matrix functions $P^{-1}$, $Q$, and $R$ are measurable on $\mathbb R_+$ and summable on each of its closed finite subintervals. We study the operators generated in the space $\mathscr L^2_n(\mathbb R_+)$ by formal expressions of the form $$ l[f]=-(P(f'-Rf))'-R^*P(f'-Rf)+Qf $$ and, as a particular case, operators generated by expressions of the form $$ l[f]=-(P_0f')'+i((Q_0f)'+Q_0f')+P'_1f, $$ where everywhere the derivatives are understood in the sense of distributions and $P_0$, $Q_0$, and $P_1$ are Hermitian matrix functions of order $n$ with Lebesgue measurable elements such that $P^{-1}_0$ exists and $\|P_0\|,\|P^{-1}_0\|, \|P^{-1}_0\|\|P_1\|^2,\|P^{-1}_0\|\|Q_0\|^2 \in \mathscr L^1_{\mathrm{loc}}(\mathbb R_+)$. The main goal in this paper is to study of the deficiency index of the minimal operator $L_0$ generated by expression $l[f]$ in $\mathscr L^2_n(\mathbb R_+)$ in terms of the matrix functions $P$, $Q$, and $R$ ($P_0$, $Q_0$, and $P_1$). The obtained results are applied to differential operators generated by expressions of the form $$ l[f]=-f''+\sum_{k=1}^{+\infty}\mathscr H_k\delta(x-x_{k})f, $$ where $x_k$, $k=1,2,\dots$, is an increasing sequence of positive numbers, with $\lim_{k\to +\infty}x_k=+\infty$, $\mathscr H_k$ is a number Hermitian matrix of order $n$, and $\delta(x)$ is the Dirac $\delta$-function.
Keywords: Sturm–Liouville operator, deficiency index, Hermitian matrix-function, Cauchy–Bunyakovskii inequality, quasiderivative, quasidifferential equation.
Mots-clés : Jacobi matrix
@article{MZM_2016_99_2_a8,
     author = {K. A. Mirzoev and T. A. Safonova},
     title = {On the {Deficiency} {Index} of the {Vector-Valued} {Sturm--Liouville} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {262--277},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a8/}
}
TY  - JOUR
AU  - K. A. Mirzoev
AU  - T. A. Safonova
TI  - On the Deficiency Index of the Vector-Valued Sturm--Liouville Operator
JO  - Matematičeskie zametki
PY  - 2016
SP  - 262
EP  - 277
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a8/
LA  - ru
ID  - MZM_2016_99_2_a8
ER  - 
%0 Journal Article
%A K. A. Mirzoev
%A T. A. Safonova
%T On the Deficiency Index of the Vector-Valued Sturm--Liouville Operator
%J Matematičeskie zametki
%D 2016
%P 262-277
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a8/
%G ru
%F MZM_2016_99_2_a8
K. A. Mirzoev; T. A. Safonova. On the Deficiency Index of the Vector-Valued Sturm--Liouville Operator. Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 262-277. http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a8/