On the Deficiency Index of the Vector-Valued Sturm--Liouville Operator
Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 262-277.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb R_+:=[0,+\infty)$, and let the matrix functions $P$, $Q$, and $R$ of order $n$, $n\in\mathbb N$, defined on the semiaxis $\mathbb R_+$ be such that $P(x)$ is a nondegenerate matrix, $P(x)$ and $Q(x)$ are Hermitian matrices for $x\in\mathbb R_+$ and the elements of the matrix functions $P^{-1}$, $Q$, and $R$ are measurable on $\mathbb R_+$ and summable on each of its closed finite subintervals. We study the operators generated in the space $\mathscr L^2_n(\mathbb R_+)$ by formal expressions of the form $$ l[f]=-(P(f'-Rf))'-R^*P(f'-Rf)+Qf $$ and, as a particular case, operators generated by expressions of the form $$ l[f]=-(P_0f')'+i((Q_0f)'+Q_0f')+P'_1f, $$ where everywhere the derivatives are understood in the sense of distributions and $P_0$, $Q_0$, and $P_1$ are Hermitian matrix functions of order $n$ with Lebesgue measurable elements such that $P^{-1}_0$ exists and $\|P_0\|,\|P^{-1}_0\|, \|P^{-1}_0\|\|P_1\|^2,\|P^{-1}_0\|\|Q_0\|^2 \in \mathscr L^1_{\mathrm{loc}}(\mathbb R_+)$. The main goal in this paper is to study of the deficiency index of the minimal operator $L_0$ generated by expression $l[f]$ in $\mathscr L^2_n(\mathbb R_+)$ in terms of the matrix functions $P$, $Q$, and $R$ ($P_0$, $Q_0$, and $P_1$). The obtained results are applied to differential operators generated by expressions of the form $$ l[f]=-f''+\sum_{k=1}^{+\infty}\mathscr H_k\delta(x-x_{k})f, $$ where $x_k$, $k=1,2,\dots$, is an increasing sequence of positive numbers, with $\lim_{k\to +\infty}x_k=+\infty$, $\mathscr H_k$ is a number Hermitian matrix of order $n$, and $\delta(x)$ is the Dirac $\delta$-function.
Keywords: Sturm–Liouville operator, deficiency index, Hermitian matrix-function, Cauchy–Bunyakovskii inequality, quasiderivative, quasidifferential equation.
Mots-clés : Jacobi matrix
@article{MZM_2016_99_2_a8,
     author = {K. A. Mirzoev and T. A. Safonova},
     title = {On the {Deficiency} {Index} of the {Vector-Valued} {Sturm--Liouville} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {262--277},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a8/}
}
TY  - JOUR
AU  - K. A. Mirzoev
AU  - T. A. Safonova
TI  - On the Deficiency Index of the Vector-Valued Sturm--Liouville Operator
JO  - Matematičeskie zametki
PY  - 2016
SP  - 262
EP  - 277
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a8/
LA  - ru
ID  - MZM_2016_99_2_a8
ER  - 
%0 Journal Article
%A K. A. Mirzoev
%A T. A. Safonova
%T On the Deficiency Index of the Vector-Valued Sturm--Liouville Operator
%J Matematičeskie zametki
%D 2016
%P 262-277
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a8/
%G ru
%F MZM_2016_99_2_a8
K. A. Mirzoev; T. A. Safonova. On the Deficiency Index of the Vector-Valued Sturm--Liouville Operator. Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 262-277. http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a8/

[1] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[2] R. L. Anderson, “Limit-point and limit-circle criteria for a class of singular symmetric differential operators”, Canad. J. Math., 28:5 (1976), 905–914 | DOI | MR | Zbl

[3] V. B. Lidskii, “O chisle reshenii s integriruemym kvadratom sistemy differentsialnykh uravnenii $-y''+P(t)y=\lambda y$”, Dokl. AN SSSR, 95:2 (1954), 217–220 | MR | Zbl

[4] G. A. Kalyabin, “O chisle reshenii iz $L_2(0,\infty)$ samosopryazhennoi sistemy differentsialnykh uravnenii vtorogo poryadka”, Funkts. analiz i ego pril., 6:3 (1972), 74–76 | MR | Zbl

[5] V. P. Serebryakov, “O chisle reshenii s integriruemym kvadratom sistemy differentsialnykh uravnenii tipa Shturma–Liuvillya”, Differentsialnye uravneniya, 24:10 (1988), 1732–1738 | MR

[6] V. P. Serebryakov, “$L^p$-svoistva reshenii sistem kvazidifferentsialnykh uravnenii vtorogo poryadka i vozmuschenie ikh koeffitsientov na mnozhestvakh polozhitelnoi mery”, Differentsialnye uravneniya, 35:7 (1999), 909–917 | MR | Zbl

[7] V. P. Serebryakov, “Ob indekse defekta matrichnykh differentsialnykh operatorov vtorogo poryadka s bystro ostsilliruyuschimi koeffitsientami”, Izv. vuzov. Matem., 2000, no. 3, 48–53 | MR | Zbl

[8] K. A. Mirzoev, T. A. Safonova, “Singulyarnye operatory Shturma–Liuvillya s potentsialom-raspredeleniem v prostranstve vektor-funktsii”, Dokl. RAN, 441:2 (2011), 165–168 | MR | Zbl

[9] K. A. Mirzoev, T. A. Safonova, “Singulyarnye operatory Shturma–Liuvillya s negladkimi potentsialami v prostranstve vektor-funktsii”, Ufimsk. matem. zhurn., 3:3 (2011), 105–119 | Zbl

[10] I. N. Broitigam, K. A. Mirzoev, T. A. Safonova, “Analog teoremy Orlova ob indekse defekta dlya matrichnykh differentsialnykh operatorov vtorogo poryadka”, Matem. zametki, 97:2 (2015), 314–317 | DOI | MR | Zbl

[11] K. A. Mirzoev, “Funktsiya Koshi i $\mathscr{L}^p_w$-svoistva reshenii kvazidifferentsialnykh uravnenii”, UMN, 46:4 (1991), 161–162 | MR | Zbl

[12] K. A. Mirzoev, “Operatory Shturma–Liuvillya”, Tr. MMO, 75, no. 2, MTsNMO, M., 2014, 335–359 | Zbl

[13] K. A. Mirzoev, “New existence criteria for limit points of Sturm–Liouville operator”, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb., 40, Special Issue (2014), 290–299 | Zbl

[14] A. Zettl, Sturm–Liouville Theory, Math. Surveys Monogr., 121, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[15] A. S. Kostenko, M. M. Malamud, “Ob odnomernom operatore Shredingera s $\delta$-vzaimodeistviyami”, Funkts. analiz i ego pril., 44:2 (2010), 87–91 | DOI | MR | Zbl

[16] A. S. Kostenko, M. M. Malamud, “1-D Schrödinger operators with local point interactions on a discrete set”, J. Differential Equations, 249:2 (2010), 253–304 | DOI | MR | Zbl

[17] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR | Zbl

[18] A. G. Kostyuchenko, K. A. Mirzoev, “Trekhchlennye rekurrentnye sootnosheniya s matrichnymi koeffitsientami. Vpolne neopredelennyi sluchai”, Matem. zametki, 63:5 (1998), 709–716 | DOI | MR | Zbl

[19] A. G. Kostyuchenko, K. A. Mirzoev, “Obobschennye yakobievy matritsy i indeksy defekta obyknovennykh differentsialnykh operatorov s polinomialnymi koeffitsientami”, Funkts. analiz i ego pril., 33:1 (1999), 30–45 | DOI | MR | Zbl

[20] A. G. Kostyuchenko, K. A. Mirzoev, “Priznaki vpolne neopredelennosti yakobievykh matrits s matrichnymi elementami”, Funkts. analiz i ego pril., 35:4 (2001), 32–37 | DOI | MR | Zbl

[21] C. S. Christ, G. Stolz, “Spectral theory of one-dimensional Schrödinger operators with point interactions”, J. Math. Anal. Appl., 184:3 (1994), 491–516 | DOI | MR | Zbl

[22] N. N. Konechnaya, “Ob asimptoticheskom integrirovanii simmetricheskikh kvazidifferentsialnykh uravnenii vtorogo poryadka”, Matem. zametki, 90:6 (2011), 875–884 | DOI | MR | Zbl

[23] M. G. Krein, “Beskonechnye $J$-matritsy i matrichnaya problema momentov”, Dokl. AN SSSR, 69:2 (1949), 125–128 | MR | Zbl