Conjugate Functions on the Closed Interval and Their Relationship with Uniform Rational and Piecewise Polynomial Approximations
Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 248-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

Earlier the second author showed that, in the periodic case, the rate of best uniform rational approximations of a function is well described in terms of the rates of best uniform piecewise polynomial approximations of the function itself and its conjugate. In the present paper, a similar result is obtained for a closed interval.
Keywords: best uniform rational approximation of a function, best uniform piecewise polynomial approximation, $L_p$-modulus of smoothness, Jordan curve, Szegö-type inequality.
Mots-clés : Besov space $B_p^\alpha$
@article{MZM_2016_99_2_a7,
     author = {T. S. Mardvilko and A. A. Pekarskii},
     title = {Conjugate {Functions} on the {Closed} {Interval} and {Their} {Relationship} with {Uniform} {Rational} and {Piecewise} {Polynomial} {Approximations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {248--261},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a7/}
}
TY  - JOUR
AU  - T. S. Mardvilko
AU  - A. A. Pekarskii
TI  - Conjugate Functions on the Closed Interval and Their Relationship with Uniform Rational and Piecewise Polynomial Approximations
JO  - Matematičeskie zametki
PY  - 2016
SP  - 248
EP  - 261
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a7/
LA  - ru
ID  - MZM_2016_99_2_a7
ER  - 
%0 Journal Article
%A T. S. Mardvilko
%A A. A. Pekarskii
%T Conjugate Functions on the Closed Interval and Their Relationship with Uniform Rational and Piecewise Polynomial Approximations
%J Matematičeskie zametki
%D 2016
%P 248-261
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a7/
%G ru
%F MZM_2016_99_2_a7
T. S. Mardvilko; A. A. Pekarskii. Conjugate Functions on the Closed Interval and Their Relationship with Uniform Rational and Piecewise Polynomial Approximations. Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 248-261. http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a7/

[1] A. A. Pekarskii, “Sopryazhennye funktsii i ikh svyaz s ravnomernymi ratsionalnymi i kusochno-polinomialnymi priblizheniyami”, Matem. sb., 206:2 (2015), 175–182 | DOI | MR | Zbl

[2] R. A. DeVore, G. G. Lorentz, Constructive Approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl

[3] B. C. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl

[4] F. W. King, Hilbert Transforms, Vol. 1, Encyclopedia Math. Appl., 124, Cambridge Univ. Press, Cambridge, 2009 | MR | Zbl

[5] A. A. Pekarskii, “Chebyshevskie ratsionalnye priblizheniya v kruge, na okruzhnosti i na otrezke”, Matem. sb., 133:1 (1987), 86–102 | MR | Zbl

[6] V. P. Motornyi, “Priblizhenie odnogo klassa singulyarnykh integralov algebraicheskimi mnogochlenami s uchetom polozheniya tochki na otrezke”, Funktsionalnye prostranstva, garmonicheskii analiz, differentsialnye uravneniya, Tr. MIAN, 232, Nauka, M., 2001, 268–285 | MR | Zbl

[7] V. R. Misyuk, A. A. Pekarskii, “Sopryazhennye funktsii na otrezke i sootnosheniya dlya ikh nailuchshikh ravnomernykh polinomialnykh priblizhdenii”, Izv. NAN Belarusi. Ser. fiz.-matem. nauk, 2015, no. 2, 37–40

[8] A. A. Pekarskii, “Approximation by rational functions with free poles”, East J. Approx., 13:3 (2007), 227–319 | MR

[9] E. P. Dolzhenko, “Skorost priblizheniya ratsionalnymi drobyami i svoistva funktsii”, Matem. sb., 56:4 (1962), 403–432 | MR | Zbl

[10] G. G. Lorentz, M. v. Golitschek, Y. Makovoz, Constructive Approximation. Advanced Problems, Grundlehren Math. Wiss., 304, Springer-Verlag, Berlin, 1996 | MR | Zbl

[11] A. A. Pekarskii, “Obobschennaya ratsionalnaya approksimatsiya v kruge”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 1990, no. 6, 9–14 | MR

[12] V. I. Danchenko, “O ratsionalnykh sostavlyayuschikh meromorfnykh funktsii i ikh proizvodnykh”, Anal. Math., 16:4 (1990), 241–255 | DOI | Zbl

[13] E. Dyn'kin, “Inequalities for rational functions”, J. Approx. Theory, 91:3 (1997), 349–367 | DOI | MR | Zbl

[14] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl

[15] A. A. Pekarskii, “Neravenstva tipa Bernshteina dlya proizvodnykh ratsionalnykh funktsii v prostranstvakh $L_p$, $0

1$, na krivykh Lavrenteva”, Algebra i analiz, 16:3 (2004), 143–170 | MR | Zbl

[16] V. V. Peller, “Ratsionalnaya approksimatsiya i gladkost funktsii”, Issledovaniya po lineinym operatoram i teorii funktsii. X, Zap. nauchn. sem. LOMI, 107, Izd-vo «Nauka», Leningrad. otd., L., 1982, 150–159 | MR | Zbl

[17] V. V. Peller, “Opisanie operatorov Gankelya klassa $\mathfrak S_p$ pri $p>0$, issledovanie skorosti ratsionalnoi approksimatsii i drugie prilozheniya”, Matem. sb., 122:4 (1983), 481–510 | MR | Zbl