Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_99_2_a7, author = {T. S. Mardvilko and A. A. Pekarskii}, title = {Conjugate {Functions} on the {Closed} {Interval} and {Their} {Relationship} with {Uniform} {Rational} and {Piecewise} {Polynomial} {Approximations}}, journal = {Matemati\v{c}eskie zametki}, pages = {248--261}, publisher = {mathdoc}, volume = {99}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a7/} }
TY - JOUR AU - T. S. Mardvilko AU - A. A. Pekarskii TI - Conjugate Functions on the Closed Interval and Their Relationship with Uniform Rational and Piecewise Polynomial Approximations JO - Matematičeskie zametki PY - 2016 SP - 248 EP - 261 VL - 99 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a7/ LA - ru ID - MZM_2016_99_2_a7 ER -
%0 Journal Article %A T. S. Mardvilko %A A. A. Pekarskii %T Conjugate Functions on the Closed Interval and Their Relationship with Uniform Rational and Piecewise Polynomial Approximations %J Matematičeskie zametki %D 2016 %P 248-261 %V 99 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a7/ %G ru %F MZM_2016_99_2_a7
T. S. Mardvilko; A. A. Pekarskii. Conjugate Functions on the Closed Interval and Their Relationship with Uniform Rational and Piecewise Polynomial Approximations. Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 248-261. http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a7/
[1] A. A. Pekarskii, “Sopryazhennye funktsii i ikh svyaz s ravnomernymi ratsionalnymi i kusochno-polinomialnymi priblizheniyami”, Matem. sb., 206:2 (2015), 175–182 | DOI | MR | Zbl
[2] R. A. DeVore, G. G. Lorentz, Constructive Approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl
[3] B. C. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl
[4] F. W. King, Hilbert Transforms, Vol. 1, Encyclopedia Math. Appl., 124, Cambridge Univ. Press, Cambridge, 2009 | MR | Zbl
[5] A. A. Pekarskii, “Chebyshevskie ratsionalnye priblizheniya v kruge, na okruzhnosti i na otrezke”, Matem. sb., 133:1 (1987), 86–102 | MR | Zbl
[6] V. P. Motornyi, “Priblizhenie odnogo klassa singulyarnykh integralov algebraicheskimi mnogochlenami s uchetom polozheniya tochki na otrezke”, Funktsionalnye prostranstva, garmonicheskii analiz, differentsialnye uravneniya, Tr. MIAN, 232, Nauka, M., 2001, 268–285 | MR | Zbl
[7] V. R. Misyuk, A. A. Pekarskii, “Sopryazhennye funktsii na otrezke i sootnosheniya dlya ikh nailuchshikh ravnomernykh polinomialnykh priblizhdenii”, Izv. NAN Belarusi. Ser. fiz.-matem. nauk, 2015, no. 2, 37–40
[8] A. A. Pekarskii, “Approximation by rational functions with free poles”, East J. Approx., 13:3 (2007), 227–319 | MR
[9] E. P. Dolzhenko, “Skorost priblizheniya ratsionalnymi drobyami i svoistva funktsii”, Matem. sb., 56:4 (1962), 403–432 | MR | Zbl
[10] G. G. Lorentz, M. v. Golitschek, Y. Makovoz, Constructive Approximation. Advanced Problems, Grundlehren Math. Wiss., 304, Springer-Verlag, Berlin, 1996 | MR | Zbl
[11] A. A. Pekarskii, “Obobschennaya ratsionalnaya approksimatsiya v kruge”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 1990, no. 6, 9–14 | MR
[12] V. I. Danchenko, “O ratsionalnykh sostavlyayuschikh meromorfnykh funktsii i ikh proizvodnykh”, Anal. Math., 16:4 (1990), 241–255 | DOI | Zbl
[13] E. Dyn'kin, “Inequalities for rational functions”, J. Approx. Theory, 91:3 (1997), 349–367 | DOI | MR | Zbl
[14] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl
[15] A. A. Pekarskii, “Neravenstva tipa Bernshteina dlya proizvodnykh ratsionalnykh funktsii v prostranstvakh $L_p$, $0
1$, na krivykh Lavrenteva”, Algebra i analiz, 16:3 (2004), 143–170 | MR | Zbl[16] V. V. Peller, “Ratsionalnaya approksimatsiya i gladkost funktsii”, Issledovaniya po lineinym operatoram i teorii funktsii. X, Zap. nauchn. sem. LOMI, 107, Izd-vo «Nauka», Leningrad. otd., L., 1982, 150–159 | MR | Zbl
[17] V. V. Peller, “Opisanie operatorov Gankelya klassa $\mathfrak S_p$ pri $p>0$, issledovanie skorosti ratsionalnoi approksimatsii i drugie prilozheniya”, Matem. sb., 122:4 (1983), 481–510 | MR | Zbl