Partial Total Boundedness of Solutions to Systems of Differential Equations with Partly Controlled Initial Conditions
Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 239-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notions of partial total boundedness of solutions with partially controlled initial conditions and of partial total equiboundedness of solutions with partially controlled initial conditions are introduced. The direct Lyapunov method and the method of Lyapunov vector functions are used to obtain sufficient conditions for these types of boundedness of the solutions.
Keywords: partial total boundedness, partial total equiboundedness, Lyapunov method, partially controlled initial conditions, stability, equilibrium.
@article{MZM_2016_99_2_a6,
     author = {K. S. Lapin},
     title = {Partial {Total} {Boundedness} of {Solutions} to {Systems} of {Differential} {Equations} with {Partly} {Controlled} {Initial} {Conditions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {239--247},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a6/}
}
TY  - JOUR
AU  - K. S. Lapin
TI  - Partial Total Boundedness of Solutions to Systems of Differential Equations with Partly Controlled Initial Conditions
JO  - Matematičeskie zametki
PY  - 2016
SP  - 239
EP  - 247
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a6/
LA  - ru
ID  - MZM_2016_99_2_a6
ER  - 
%0 Journal Article
%A K. S. Lapin
%T Partial Total Boundedness of Solutions to Systems of Differential Equations with Partly Controlled Initial Conditions
%J Matematičeskie zametki
%D 2016
%P 239-247
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a6/
%G ru
%F MZM_2016_99_2_a6
K. S. Lapin. Partial Total Boundedness of Solutions to Systems of Differential Equations with Partly Controlled Initial Conditions. Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 239-247. http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a6/

[1] T. Yoshizawa, “Liapunov's function and boundedness of solutions”, Funkcial. Ekvac., 2 (1959), 95–142 | MR | Zbl

[2] V. M. Matrosov, Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001

[3] V. I. Vorotnikov, “Ob ustoichivosti i ustoichivosti po chasti peremennykh “chastichnykh” polozhenii ravnovesiya nelineinykh dinamicheskikh sistem”, Dokl. RAN, 389:3 (2003), 332–337 | MR

[4] V. I. Vorotnikov, “Chastichnaya ustoichivost i upravlenie: sostoyanie problemy i perspektivy razvitiya”, Avtomat. i telemekh., 2005, no. 4, 3–59 | MR | Zbl

[5] V. I. Vorotnikov, Yu. G. Martyshenko, “K teorii chastichnoi ustoichivosti nelineinykh dinamicheskikh sistem”, Izv. RAN. Teor. sist. upravl., 2010, no. 5, 23–31 | MR | Zbl

[6] K. S. Lapin, “Chastichnaya ravnomernaya ogranichennost reshenii sistem differentsialnykh uravnenii s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 50:3 (2014), 309–316 | DOI | Zbl

[7] K. S. Lapin, “Ogranichennost v predele reshenii sistem differentsialnykh uravnenii po chasti peremennykh s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 49:10 (2013), 1281–1286 | Zbl

[8] K. S. Lapin, “Ravnomernaya ogranichennost reshenii sistem differentsialnykh uravnenii po chasti peremennykh s chastichno kontroliruemymi nachalnymi usloviyami”, Matem. zametki, 96:3 (2014), 393–404 | DOI | Zbl

[9] V. V. Rumyantsev, A. S. Oziraner, Ustoichivost i stabilizatsiya dvizheniya otnositelno chasti peremennykh, Nauka, M., 1987 | MR | Zbl