Inequalities between Best Polynomial Approximations and Some Smoothness Characteristics in the Space~$L_2$ and Widths of Classes of Functions
Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 215-238

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain exact constants in Jackson-type inequalities for smoothness characteristics $\Lambda_k(f)$, $k\in \mathbb{N}$, defined by averaging the $k$th-order finite differences of functions $f \in L_2$. On the basis of this, for differentiable functions in the classes $L^r_2$, $r\in \mathbb{N}$, we refine the constants in Jackson-type inequalities containing the $k$th-order modulus of continuity $\omega_k$. For classes of functions defined by their smoothness characteristics $\Lambda_k(f)$ and majorants $\Phi$ satisfying a number of conditions, we calculate the exact values of certain $n$-widths.
Keywords: best polynomial approximation, smoothness characteristics, Jackson-type inequality, modulus of continuity, Bernstein $n$-width of a function class, Rolle's theorem.
@article{MZM_2016_99_2_a5,
     author = {S. B. Vakarchuk and V. I. Zabutnaya},
     title = {Inequalities between {Best} {Polynomial} {Approximations} and {Some} {Smoothness} {Characteristics} in the {Space~}$L_2$ and {Widths} of {Classes} of {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {215--238},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a5/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
AU  - V. I. Zabutnaya
TI  - Inequalities between Best Polynomial Approximations and Some Smoothness Characteristics in the Space~$L_2$ and Widths of Classes of Functions
JO  - Matematičeskie zametki
PY  - 2016
SP  - 215
EP  - 238
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a5/
LA  - ru
ID  - MZM_2016_99_2_a5
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%A V. I. Zabutnaya
%T Inequalities between Best Polynomial Approximations and Some Smoothness Characteristics in the Space~$L_2$ and Widths of Classes of Functions
%J Matematičeskie zametki
%D 2016
%P 215-238
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a5/
%G ru
%F MZM_2016_99_2_a5
S. B. Vakarchuk; V. I. Zabutnaya. Inequalities between Best Polynomial Approximations and Some Smoothness Characteristics in the Space~$L_2$ and Widths of Classes of Functions. Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 215-238. http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a5/