Inequalities between Best Polynomial Approximations and Some Smoothness Characteristics in the Space~$L_2$ and Widths of Classes of Functions
Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 215-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain exact constants in Jackson-type inequalities for smoothness characteristics $\Lambda_k(f)$, $k\in \mathbb{N}$, defined by averaging the $k$th-order finite differences of functions $f \in L_2$. On the basis of this, for differentiable functions in the classes $L^r_2$, $r\in \mathbb{N}$, we refine the constants in Jackson-type inequalities containing the $k$th-order modulus of continuity $\omega_k$. For classes of functions defined by their smoothness characteristics $\Lambda_k(f)$ and majorants $\Phi$ satisfying a number of conditions, we calculate the exact values of certain $n$-widths.
Keywords: best polynomial approximation, smoothness characteristics, Jackson-type inequality, modulus of continuity, Bernstein $n$-width of a function class, Rolle's theorem.
@article{MZM_2016_99_2_a5,
     author = {S. B. Vakarchuk and V. I. Zabutnaya},
     title = {Inequalities between {Best} {Polynomial} {Approximations} and {Some} {Smoothness} {Characteristics} in the {Space~}$L_2$ and {Widths} of {Classes} of {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {215--238},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a5/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
AU  - V. I. Zabutnaya
TI  - Inequalities between Best Polynomial Approximations and Some Smoothness Characteristics in the Space~$L_2$ and Widths of Classes of Functions
JO  - Matematičeskie zametki
PY  - 2016
SP  - 215
EP  - 238
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a5/
LA  - ru
ID  - MZM_2016_99_2_a5
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%A V. I. Zabutnaya
%T Inequalities between Best Polynomial Approximations and Some Smoothness Characteristics in the Space~$L_2$ and Widths of Classes of Functions
%J Matematičeskie zametki
%D 2016
%P 215-238
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a5/
%G ru
%F MZM_2016_99_2_a5
S. B. Vakarchuk; V. I. Zabutnaya. Inequalities between Best Polynomial Approximations and Some Smoothness Characteristics in the Space~$L_2$ and Widths of Classes of Functions. Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 215-238. http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a5/

[1] Z. Ditzian, V. Totik, Moduli of Smoothness, Springer Ser. Comput. Math., 9, Springer, New York, 1987 | MR | Zbl

[2] B. Sendov, V. Popov, Usrednennye moduli gladkosti, Mir, M., 1988 | MR | Zbl

[3] R. M. Trigub, “Absolyutnaya skhodimost integralov Fure, summiruemost ryadov Fure i priblizhenie polinomami funktsii na tore”, Izv. AN SSSR. Ser. matem., 44:6 (1980), 1378–1409 | MR | Zbl

[4] K. V. Runovskii, “O priblizhenii semeistvami lineinykh polinomialnykh operatorov v prostranstvakh $L_p$, $0

1$”, Matem. sb., 185:8 (1994), 81–102 | MR | Zbl

[5] N. P. Pustovoitov, “Otsenka nailuchshikh priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami cherez usrednennye raznosti i mnogomernaya teorema Dzheksona”, Matem. sb., 188:10 (1997), 95–108 | DOI | MR | Zbl

[6] S. B. Vakarchuk, “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov funktsionalnykh klassov iz $L_2$”, Matem. zametki, 78:5 (2005), 792–796 | DOI | MR | Zbl

[7] S. B. Vakarchuk, V. I. Zabutna, “Widths of function classes from $L_2$ and exact constants in Jackson type inequalities”, East J. Approx., 14:4 (2008), 411–421 | MR | Zbl

[8] M. Sh. Shabozov, S. B. Vakarchuk, V. I. Zabutnaya, “Tochnye neravenstva tipa Dzheksona–Stechkina dlya periodicheskikh funktsii v $L_2$ i znacheniya poperechnikov klassov funktsii”, Dokl. RAN, 451:6 (2013), 625–628 | DOI | MR | Zbl

[9] V. A. Abilov, F. V. Abilova, “Nekotorye voprosy priblizheniya $2\pi$-periodicheskikh funktsii summami Fure v prostranstve $L_2(2\pi)$”, Matem. zametki, 76:6 (2004), 803–811 | DOI | MR | Zbl

[10] V. Kokilashvili, Y. E. Yildirir, “On the approximation in weighted Lebesgue space”, Proc. A. Razmadze Math. Inst., 143 (2007), 103–113 | MR | Zbl

[11] S. B. Vakarchuk, V. I. Zabutnaya, “Tochnoe neravenstvo tipa Dzheksona–Stechkina v $L_2$ i poperechniki funktsionalnykh klassov”, Matem. zametki, 86:3 (2009), 328–336 | DOI | MR | Zbl

[12] M. Sh. Shabozov, G. A. Yusupov, “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov nekotorykh klassov funktsii v $L_2$”, Sib. matem. zhurn., 52:6 (2011), 1414–1427 | MR | Zbl

[13] S. B. Vakarchuk, V. I. Zabutnaya, “Neravenstva tipa Dzheksona–Stechkina dlya spetsialnykh modulei nepreryvnosti i poperechniki funktsionalnykh klassov v prostranstve $L_2$”, Matem. zametki, 92:4 (2012), 497–514 | DOI | MR | Zbl

[14] N. I. Chernykh, “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522 | MR | Zbl

[15] V. V. Arestov, N. I. Chernykh, “On the $L_2$-approximation of periodic function by trigonometric polynomials”, Approximation and Function Spaces, North Holland, Amsterdam, 1981, 25–43 | MR | Zbl

[16] A. G. Babenko, “O neravenstve Dzheksona–Stechkina dlya nailuchshikh $L^2$-priblizhenii funktsii trigonometricheskimi polinomami”, Teoriya priblizhenii. Asimptoticheskie razlozheniya, Tr. IMM UrO RAN, 7, no. 1, 2001, 30–46 | MR | Zbl

[17] S. N. Vasilev, “Neravenstvo Dzheksona–Stechkina v $L_2[-\pi,\pi]$”, Teoriya priblizhenii. Asimptoticheskie razlozheniya, Sbornik statei, Tr. IMM UrO RAN, 7, no. 1, 2001, 75–84 | MR | Zbl

[18] A. I. Kozko, A. V. Rozhdestvenskii, “O neravenstve Dzheksona v $L_2$ s obobschennym modulem nepreryvnosti”, Matem. sb., 195:8 (2004), 3–46 | DOI | MR | Zbl

[19] V. V. Arestov, “On Jackson inequalities for approximation in $L^2$ of periodic functions by trigonometric polynomials and of functions on the line by entire functions”, Approximation Theory. A volume dedicated to Borislaw Bojanov, M. Drinov Acad. Publ. House, Sofia, 2004, 1–19 | MR

[20] A. A. Ligun, “Nekotorye neravenstva mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti v prostranstve $L_2$”, Matem. zametki, 24:6 (1978), 785–792 | MR | Zbl

[21] A. Pinkus, $n$-Widths in Approximation Theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985 | MR | Zbl

[22] L. V. Taikov, “Neravenstva, soderzhaschie nailuchshie priblizheniya i modul nepreryvnosti funktsii iz $L_2$”, Matem. zametki, 20:3 (1976), 433–438 | MR | Zbl

[23] V. V. Shalaev, “O poperechnikakh v $L_2$ klassov differentsiruemykh funktsii, opredelyaemykh modulyami nepreryvnosti vysshikh poryadkov”, Ukr. matem. zhurn., 43:1 (1991), 125–129 | MR | Zbl

[24] M. G. Esmaganbetov, “Poperechniki klassov iz $L_2[0,2\pi]$ i minimizatsiya tochnykh konstant v neravenstvakh tipa Dzheksona”, Matem. zametki, 65:6 (1999), 816–820 | DOI | MR | Zbl

[25] S. B. Vakarchuk, V. I. Zabutnaya, “O nailuchshem polinomialnom priblizhenii v prostranstve $L_2$ i poperechnikakh nekotorykh klassov funktsii”, Ukr. matem. zhurn., 64:8 (2012), 1025–1032 | MR