Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_99_2_a5, author = {S. B. Vakarchuk and V. I. Zabutnaya}, title = {Inequalities between {Best} {Polynomial} {Approximations} and {Some} {Smoothness} {Characteristics} in the {Space~}$L_2$ and {Widths} of {Classes} of {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {215--238}, publisher = {mathdoc}, volume = {99}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a5/} }
TY - JOUR AU - S. B. Vakarchuk AU - V. I. Zabutnaya TI - Inequalities between Best Polynomial Approximations and Some Smoothness Characteristics in the Space~$L_2$ and Widths of Classes of Functions JO - Matematičeskie zametki PY - 2016 SP - 215 EP - 238 VL - 99 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a5/ LA - ru ID - MZM_2016_99_2_a5 ER -
%0 Journal Article %A S. B. Vakarchuk %A V. I. Zabutnaya %T Inequalities between Best Polynomial Approximations and Some Smoothness Characteristics in the Space~$L_2$ and Widths of Classes of Functions %J Matematičeskie zametki %D 2016 %P 215-238 %V 99 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a5/ %G ru %F MZM_2016_99_2_a5
S. B. Vakarchuk; V. I. Zabutnaya. Inequalities between Best Polynomial Approximations and Some Smoothness Characteristics in the Space~$L_2$ and Widths of Classes of Functions. Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 215-238. http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a5/
[1] Z. Ditzian, V. Totik, Moduli of Smoothness, Springer Ser. Comput. Math., 9, Springer, New York, 1987 | MR | Zbl
[2] B. Sendov, V. Popov, Usrednennye moduli gladkosti, Mir, M., 1988 | MR | Zbl
[3] R. M. Trigub, “Absolyutnaya skhodimost integralov Fure, summiruemost ryadov Fure i priblizhenie polinomami funktsii na tore”, Izv. AN SSSR. Ser. matem., 44:6 (1980), 1378–1409 | MR | Zbl
[4] K. V. Runovskii, “O priblizhenii semeistvami lineinykh polinomialnykh operatorov v prostranstvakh $L_p$, $0
1$”, Matem. sb., 185:8 (1994), 81–102 | MR | Zbl[5] N. P. Pustovoitov, “Otsenka nailuchshikh priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami cherez usrednennye raznosti i mnogomernaya teorema Dzheksona”, Matem. sb., 188:10 (1997), 95–108 | DOI | MR | Zbl
[6] S. B. Vakarchuk, “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov funktsionalnykh klassov iz $L_2$”, Matem. zametki, 78:5 (2005), 792–796 | DOI | MR | Zbl
[7] S. B. Vakarchuk, V. I. Zabutna, “Widths of function classes from $L_2$ and exact constants in Jackson type inequalities”, East J. Approx., 14:4 (2008), 411–421 | MR | Zbl
[8] M. Sh. Shabozov, S. B. Vakarchuk, V. I. Zabutnaya, “Tochnye neravenstva tipa Dzheksona–Stechkina dlya periodicheskikh funktsii v $L_2$ i znacheniya poperechnikov klassov funktsii”, Dokl. RAN, 451:6 (2013), 625–628 | DOI | MR | Zbl
[9] V. A. Abilov, F. V. Abilova, “Nekotorye voprosy priblizheniya $2\pi$-periodicheskikh funktsii summami Fure v prostranstve $L_2(2\pi)$”, Matem. zametki, 76:6 (2004), 803–811 | DOI | MR | Zbl
[10] V. Kokilashvili, Y. E. Yildirir, “On the approximation in weighted Lebesgue space”, Proc. A. Razmadze Math. Inst., 143 (2007), 103–113 | MR | Zbl
[11] S. B. Vakarchuk, V. I. Zabutnaya, “Tochnoe neravenstvo tipa Dzheksona–Stechkina v $L_2$ i poperechniki funktsionalnykh klassov”, Matem. zametki, 86:3 (2009), 328–336 | DOI | MR | Zbl
[12] M. Sh. Shabozov, G. A. Yusupov, “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov nekotorykh klassov funktsii v $L_2$”, Sib. matem. zhurn., 52:6 (2011), 1414–1427 | MR | Zbl
[13] S. B. Vakarchuk, V. I. Zabutnaya, “Neravenstva tipa Dzheksona–Stechkina dlya spetsialnykh modulei nepreryvnosti i poperechniki funktsionalnykh klassov v prostranstve $L_2$”, Matem. zametki, 92:4 (2012), 497–514 | DOI | MR | Zbl
[14] N. I. Chernykh, “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522 | MR | Zbl
[15] V. V. Arestov, N. I. Chernykh, “On the $L_2$-approximation of periodic function by trigonometric polynomials”, Approximation and Function Spaces, North Holland, Amsterdam, 1981, 25–43 | MR | Zbl
[16] A. G. Babenko, “O neravenstve Dzheksona–Stechkina dlya nailuchshikh $L^2$-priblizhenii funktsii trigonometricheskimi polinomami”, Teoriya priblizhenii. Asimptoticheskie razlozheniya, Tr. IMM UrO RAN, 7, no. 1, 2001, 30–46 | MR | Zbl
[17] S. N. Vasilev, “Neravenstvo Dzheksona–Stechkina v $L_2[-\pi,\pi]$”, Teoriya priblizhenii. Asimptoticheskie razlozheniya, Sbornik statei, Tr. IMM UrO RAN, 7, no. 1, 2001, 75–84 | MR | Zbl
[18] A. I. Kozko, A. V. Rozhdestvenskii, “O neravenstve Dzheksona v $L_2$ s obobschennym modulem nepreryvnosti”, Matem. sb., 195:8 (2004), 3–46 | DOI | MR | Zbl
[19] V. V. Arestov, “On Jackson inequalities for approximation in $L^2$ of periodic functions by trigonometric polynomials and of functions on the line by entire functions”, Approximation Theory. A volume dedicated to Borislaw Bojanov, M. Drinov Acad. Publ. House, Sofia, 2004, 1–19 | MR
[20] A. A. Ligun, “Nekotorye neravenstva mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti v prostranstve $L_2$”, Matem. zametki, 24:6 (1978), 785–792 | MR | Zbl
[21] A. Pinkus, $n$-Widths in Approximation Theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985 | MR | Zbl
[22] L. V. Taikov, “Neravenstva, soderzhaschie nailuchshie priblizheniya i modul nepreryvnosti funktsii iz $L_2$”, Matem. zametki, 20:3 (1976), 433–438 | MR | Zbl
[23] V. V. Shalaev, “O poperechnikakh v $L_2$ klassov differentsiruemykh funktsii, opredelyaemykh modulyami nepreryvnosti vysshikh poryadkov”, Ukr. matem. zhurn., 43:1 (1991), 125–129 | MR | Zbl
[24] M. G. Esmaganbetov, “Poperechniki klassov iz $L_2[0,2\pi]$ i minimizatsiya tochnykh konstant v neravenstvakh tipa Dzheksona”, Matem. zametki, 65:6 (1999), 816–820 | DOI | MR | Zbl
[25] S. B. Vakarchuk, V. I. Zabutnaya, “O nailuchshem polinomialnom priblizhenii v prostranstve $L_2$ i poperechnikakh nekotorykh klassov funktsii”, Ukr. matem. zhurn., 64:8 (2012), 1025–1032 | MR