Equiconvergence of Expansions in Multiple Fourier Series and in Fourier Integrals with ``Lacunary Sequences of Partial Sums''
Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 186-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the equiconvergence on $\mathbb T^N=[-\pi,\pi)^N$ of expansions in multiple trigonometric Fourier series and in the Fourier integrals of functions $f\in L_p({\mathbb T}^N)$ and $g\in L_p({\mathbb R}^N)$, $p>1$, $N\ge 3$, $g(x)=f(x)$ on $\mathbb T^N$, in the case where the “partial sums” of these expansions, i.e., $S_n(x;f)$ and $J_\alpha(x;g)$, respectively, have “numbers” $n\in {\mathbb Z}^N$ and $\alpha\in {\mathbb R}^N$ ($n_j=[\alpha_j]$, $j=1,\dots,N$, $[t]$ is the integral part of $t\in \mathbb R^1$) containing $N-1$ components which are elements of “lacunary sequences.”
Keywords: multiple Fourier series, multiple Fourier integrals, convergence almost everywhere, lacunary sequence.
@article{MZM_2016_99_2_a3,
     author = {I. L. Bloshanskii and D. A. Grafov},
     title = {Equiconvergence of {Expansions} in {Multiple} {Fourier} {Series} and in {Fourier} {Integrals} with {``Lacunary} {Sequences} of {Partial} {Sums''}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {186--200},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a3/}
}
TY  - JOUR
AU  - I. L. Bloshanskii
AU  - D. A. Grafov
TI  - Equiconvergence of Expansions in Multiple Fourier Series and in Fourier Integrals with ``Lacunary Sequences of Partial Sums''
JO  - Matematičeskie zametki
PY  - 2016
SP  - 186
EP  - 200
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a3/
LA  - ru
ID  - MZM_2016_99_2_a3
ER  - 
%0 Journal Article
%A I. L. Bloshanskii
%A D. A. Grafov
%T Equiconvergence of Expansions in Multiple Fourier Series and in Fourier Integrals with ``Lacunary Sequences of Partial Sums''
%J Matematičeskie zametki
%D 2016
%P 186-200
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a3/
%G ru
%F MZM_2016_99_2_a3
I. L. Bloshanskii; D. A. Grafov. Equiconvergence of Expansions in Multiple Fourier Series and in Fourier Integrals with ``Lacunary Sequences of Partial Sums''. Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 186-200. http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a3/

[1] A. Zigmund, Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR | Zbl

[2] I. L. Bloshanskii, “O ravnoskhodimosti razlozhenii v kratnyi trigonometricheskii ryad Fure i integral Fure”, Matem. zametki, 18:2 (1975), 153–168 | MR | Zbl

[3] I. L. Bloshanskii, “Ravnoskhodimost razlozhenii v kratnyi ryad i integral Fure pri summirovanii po kvadratam”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 685–705 | MR | Zbl

[4] I. L. Bloshanskii, “Kratnyi integral i kratnyi ryad Fure pri summirovanii po kvadratam”, Sib. matem. zhurn., 31:1 (1990), 39–52 | MR | Zbl

[5] I. L. Bloshanskii, D. A. Grafov, “Ravnoskhodimost razlozhenii v kratnyi trigonometricheskii ryad i integral Fure v sluchae “lakunarnoi posledovatelnosti chastichnykh summ””, Dokl. RAN, 450:3 (2013), 260–263 | DOI | MR | Zbl

[6] C. Fefferman, “On the divergence of multiple Fourier series”, Bull. Amer. Math. Soc., 77:2 (1971), 191–195 | DOI | MR | Zbl

[7] M. Kojima, “On the almost everywhere convergence of rectangular partial sums of multiple Fourier series”, Sci. Rep. Kanazawa Univ., 22:2 (1977), 163–177 | MR | Zbl

[8] P. Sjölin, “Convergence almost everywhere of certain singular integrals and multiple Fourier series”, Ark. Mat., 9:1 (1971), 65–90 | DOI | MR | Zbl

[9] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[10] R. A. Hunt, “On the convergence of Fourier series”, Orthogonal Expansions and Their Continuous Analogues, Southern Illinois Univ. Press, Carbondale, Ill, 1968, 235–255 | MR | Zbl