Description of Self-Similar Multipliers in Negative Sobolev Spaces Satisfying the Dirichlet Condition
Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 314-318.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: self-similar multiplier, negative Sobolev space, Dirichlet condition, affinely self-similar function, self-similar function of zero spectral order, the space $\mathring W_2^{1}[0,1]$, the space $\mathring W_2^{-1}[0,1]$, Cauchy–Bunyakovskii inequality.
@article{MZM_2016_99_2_a14,
     author = {J. V. Tikhanov and I. A. Sheipak},
     title = {Description of {Self-Similar} {Multipliers} in {Negative} {Sobolev} {Spaces} {Satisfying} the {Dirichlet} {Condition}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {314--318},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a14/}
}
TY  - JOUR
AU  - J. V. Tikhanov
AU  - I. A. Sheipak
TI  - Description of Self-Similar Multipliers in Negative Sobolev Spaces Satisfying the Dirichlet Condition
JO  - Matematičeskie zametki
PY  - 2016
SP  - 314
EP  - 318
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a14/
LA  - ru
ID  - MZM_2016_99_2_a14
ER  - 
%0 Journal Article
%A J. V. Tikhanov
%A I. A. Sheipak
%T Description of Self-Similar Multipliers in Negative Sobolev Spaces Satisfying the Dirichlet Condition
%J Matematičeskie zametki
%D 2016
%P 314-318
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a14/
%G ru
%F MZM_2016_99_2_a14
J. V. Tikhanov; I. A. Sheipak. Description of Self-Similar Multipliers in Negative Sobolev Spaces Satisfying the Dirichlet Condition. Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 314-318. http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a14/

[1] M. I. Neiman-zade, A. A. Shkalikov, Matem. zametki, 66:5 (1999), 723–733 | DOI | MR | Zbl

[2] A. M. Savchuk, A. A. Shkalikov, Matem. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl

[3] I. A. Sheipak, Matem. zametki, 81:6 (2007), 924–938 | DOI | MR | Zbl