Estimates of the Averaged Sums of Fractional Parts
Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 298-308
Cet article a éte moissonné depuis la source Math-Net.Ru
We establish asymptotically sharp estimates for the sums of the inverses (and more general sums) of the fractional parts $\{i\theta\}$ of irrational numbers $\theta$, depending on the arithmetical characteristics of the numbers $\theta$.
Keywords:
averaged sum of fractional parts, irrational number, continued fraction, monotone function, Khinchin's theorem.
Mots-clés : convergent, Abel transformation
Mots-clés : convergent, Abel transformation
@article{MZM_2016_99_2_a12,
author = {E. A. Sevast'yanov and I. Yu. Yakupov},
title = {Estimates of the {Averaged} {Sums} of {Fractional} {Parts}},
journal = {Matemati\v{c}eskie zametki},
pages = {298--308},
year = {2016},
volume = {99},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a12/}
}
E. A. Sevast'yanov; I. Yu. Yakupov. Estimates of the Averaged Sums of Fractional Parts. Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 298-308. http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a12/
[1] L. Keipers, G. Niderreiter, Ravnomernoe raspredelenie posledovatelnostei, Mir, M., 1985 | MR | Zbl
[2] G. H. Hardy, J. E. Littlewood, “Notes on the theory of series (XXIV): A curious power-series”, Proc. Cambridge Philos. Soc., 42 (1946), 85–90 | DOI | MR | Zbl
[3] V. A. Oskolkov, “Zadachi Khardi–Litlvuda o ravnomernom raspredelenii arifmeticheskikh progressii”, Izv. AN SSSR. Ser. matem., 54:1 (1990), 159–172 | MR | Zbl
[4] S. Leng, Vvedenie v teoriyu diofantovykh priblizhenii, Mir, M., 1970 | MR | Zbl
[5] A. Ya. Khinchin, Tsepnye drobi, GIFML, M., 1960 | MR | Zbl