Estimates of the Averaged Sums of Fractional Parts
Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 298-308
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish asymptotically sharp estimates for the sums of the inverses (and more general sums) of the fractional parts $\{i\theta\}$ of irrational numbers $\theta$, depending on the arithmetical characteristics of the numbers $\theta$.
Keywords:
averaged sum of fractional parts, irrational number, continued fraction, monotone function, Khinchin's theorem.
Mots-clés : convergent, Abel transformation
Mots-clés : convergent, Abel transformation
@article{MZM_2016_99_2_a12,
author = {E. A. Sevast'yanov and I. Yu. Yakupov},
title = {Estimates of the {Averaged} {Sums} of {Fractional} {Parts}},
journal = {Matemati\v{c}eskie zametki},
pages = {298--308},
publisher = {mathdoc},
volume = {99},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a12/}
}
E. A. Sevast'yanov; I. Yu. Yakupov. Estimates of the Averaged Sums of Fractional Parts. Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 298-308. http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a12/