Independence Numbers of Random Subgraphs of a~Distance Graph
Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 288-297

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the so-called distance graph $G(n,3,1)$, whose vertices can be identified with three-element subsets of the set $\{1,2,\dots,n\}$, two vertices being joined by an edge if and only if the corresponding subsets have exactly one common element. We study some properties of random subgraphs of $G(n,3,1)$ in the Erdős–Rényi model, in which each edge is included in the subgraph with some given probability $p$ independently of the other edges. We find the asymptotics of the independence number of a random subgraph of $G(n,3,1)$.
Keywords: distance graph, random subgraph, independence number, Erdős–Rényi model.
@article{MZM_2016_99_2_a11,
     author = {M. M. Pyaderkin},
     title = {Independence {Numbers} of {Random} {Subgraphs} of {a~Distance} {Graph}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {288--297},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a11/}
}
TY  - JOUR
AU  - M. M. Pyaderkin
TI  - Independence Numbers of Random Subgraphs of a~Distance Graph
JO  - Matematičeskie zametki
PY  - 2016
SP  - 288
EP  - 297
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a11/
LA  - ru
ID  - MZM_2016_99_2_a11
ER  - 
%0 Journal Article
%A M. M. Pyaderkin
%T Independence Numbers of Random Subgraphs of a~Distance Graph
%J Matematičeskie zametki
%D 2016
%P 288-297
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a11/
%G ru
%F MZM_2016_99_2_a11
M. M. Pyaderkin. Independence Numbers of Random Subgraphs of a~Distance Graph. Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 288-297. http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a11/