Independence Numbers of Random Subgraphs of a~Distance Graph
Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 288-297
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the so-called distance graph $G(n,3,1)$, whose vertices can be identified with three-element subsets of the set $\{1,2,\dots,n\}$, two vertices being joined by an edge if and only if the corresponding subsets have exactly one common element. We study some properties of random subgraphs of $G(n,3,1)$ in the Erdős–Rényi model, in which each edge is included in the subgraph with some given probability $p$ independently of the other edges. We find the asymptotics of the independence number of a random subgraph of $G(n,3,1)$.
Keywords:
distance graph, random subgraph, independence number, Erdős–Rényi model.
@article{MZM_2016_99_2_a11,
author = {M. M. Pyaderkin},
title = {Independence {Numbers} of {Random} {Subgraphs} of {a~Distance} {Graph}},
journal = {Matemati\v{c}eskie zametki},
pages = {288--297},
publisher = {mathdoc},
volume = {99},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a11/}
}
M. M. Pyaderkin. Independence Numbers of Random Subgraphs of a~Distance Graph. Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 288-297. http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a11/