Common Eigenfunctions of Commuting Differential Operators of Rank~$2$
Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 283-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

Commuting differential operators of rank $2$ are considered. With each pair of commuting operators a complex curve called the spectral curve is associated. The genus of this curve is called the genus of the commuting pair. The dimension of the space of common eigenfunctions is called the rank of the commuting operators. The case of rank $1$ was studied by I. M. Krichever; there exist explicit expressions for the coefficients of commuting operators in terms of Riemann theta-functions. The case of rank $2$ and genus $1$ was considered and studied by S. P. Novikov and I. M. Krichever. All commuting operators of rank $3$ and genus $1$ were found by O. I. Mokhov. A. E. Mironov invented an effective method for constructing operators of rank $2$ and genus greater than $1$; by using this method, many diverse examples were constructed. Of special interest are commuting operators with polynomial coefficients, which are closely related to the Jacobian problem and many other problems. Common eigenfunctions of commuting operators with polynomial coefficients and smooth spectral curve are found explicitly in the present paper. This has not been done so far.
Keywords: commuting differential operators of rank $2$, common eigenfunctions, spectral curve
Mots-clés : confluent Heun equation.
@article{MZM_2016_99_2_a10,
     author = {V. S. Oganesyan},
     title = {Common {Eigenfunctions} of {Commuting} {Differential} {Operators} of {Rank~}$2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {283--287},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a10/}
}
TY  - JOUR
AU  - V. S. Oganesyan
TI  - Common Eigenfunctions of Commuting Differential Operators of Rank~$2$
JO  - Matematičeskie zametki
PY  - 2016
SP  - 283
EP  - 287
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a10/
LA  - ru
ID  - MZM_2016_99_2_a10
ER  - 
%0 Journal Article
%A V. S. Oganesyan
%T Common Eigenfunctions of Commuting Differential Operators of Rank~$2$
%J Matematičeskie zametki
%D 2016
%P 283-287
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a10/
%G ru
%F MZM_2016_99_2_a10
V. S. Oganesyan. Common Eigenfunctions of Commuting Differential Operators of Rank~$2$. Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 283-287. http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a10/

[1] J. L. Burchnall, I. W. Chaundy, “Commutative ordinary differential operators”, Proc. London Math. Soc. (2), 21 (1923), 420–440 | DOI | MR | Zbl

[2] I. M. Krichever, “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz i ego pril., 11:1 (1977), 15–31 | MR | Zbl

[3] I. M. Krichever, “Kommutativnye koltsa obyknovennykh lineinykh differentsialnykh operatorov”, Funkts. analiz i ego pril., 12:3 (1978), 20–31 | MR | Zbl

[4] J. Dixmier, “Sur les algèbres de Weyl”, Bull. Soc. Math. France, 96 (1968), 209–242 | MR | Zbl

[5] I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya nad algebraicheskimi krivymi i nelineinye uravneniya”, UMN, 35:6 (1980), 47–68 | MR | Zbl

[6] O. I. Mokhov, “Kommutiruyuschie obyknovennye differentsialnye operatory ranga 3, otvechayuschie ellipticheskoi krivoi”, UMN, 37:4 (1982), 169–170 | MR | Zbl

[7] O. I. Mokhov, “Kommutiruyuschie differentsialnye operatory ranga 3 i nelineinye uravneniya”, Izv. AN SSSR. Ser. matem., 53:6 (1989), 1291–1315 | MR | Zbl

[8] A. E. Mironov, “Self-adjoint commuting ordinary differential operators”, Invent. math., 197:2 (2014), 417–431 | DOI | MR | Zbl

[9] O. I. Mokhov, “O kommutativnykh podalgebrakh algebr Veilya, svyazannykh s kommutiruyuschimi operatorami proizvolnogo ranga i roda”, Matem. zametki, 94:2 (2013), 314–316 | DOI | MR | Zbl

[10] V. S. Oganesyan, Commuting Differential Operators of Rank $2$ with Polynomial Coefficients, 2015, arXiv: 1409.4058

[11] S. Yu. Slavyanov, V. Lai, Spetsialnye funktsii. Edinaya teoriya, osnovannaya na analize osobennostei, Nevskii dialekt, SPb., 2002