Global Solvability of Initial Boundary-Value Problems for Nonlinear Analogs of the Boussinesq Equation
Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 171-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solvability of the natural (first, second, and mixed) initial boundary-value problems for nonlinear analogs of the Boussinesq equation is studied. Uniqueness theorems for regular solutions and global solvability theorems are proved.
Mots-clés : Boussinesq equation
Keywords: initial boundary-value problem, uniqueness theorem, global solvability, Hölder's inequality, Young's inequality, Gronwall–Bellman lemma.
@article{MZM_2016_99_2_a1,
     author = {Sh. Amirov and A. I. Kozhanov},
     title = {Global {Solvability} of {Initial} {Boundary-Value} {Problems} for {Nonlinear} {Analogs} of the {Boussinesq} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {171--180},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a1/}
}
TY  - JOUR
AU  - Sh. Amirov
AU  - A. I. Kozhanov
TI  - Global Solvability of Initial Boundary-Value Problems for Nonlinear Analogs of the Boussinesq Equation
JO  - Matematičeskie zametki
PY  - 2016
SP  - 171
EP  - 180
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a1/
LA  - ru
ID  - MZM_2016_99_2_a1
ER  - 
%0 Journal Article
%A Sh. Amirov
%A A. I. Kozhanov
%T Global Solvability of Initial Boundary-Value Problems for Nonlinear Analogs of the Boussinesq Equation
%J Matematičeskie zametki
%D 2016
%P 171-180
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a1/
%G ru
%F MZM_2016_99_2_a1
Sh. Amirov; A. I. Kozhanov. Global Solvability of Initial Boundary-Value Problems for Nonlinear Analogs of the Boussinesq Equation. Matematičeskie zametki, Tome 99 (2016) no. 2, pp. 171-180. http://geodesic.mathdoc.fr/item/MZM_2016_99_2_a1/

[1] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR | Zbl

[2] Kh. Ikezi, “Eksperimentalnoe issledovanie solitonov v plazme”, Solitony v deistvii, Mir, M., 1981, 163–184

[3] R. Dodd, Dzh. Eilbek, Dzh. Gibbon, Kh. Morris, Solitony i nelineinye volnovye yavleniya, Mir, M., 1988 | MR | Zbl

[4] G. V. Demidenko, S. V. Uspenskii, Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR | Zbl

[5] G. Chen, S. Wang, “Existence and nonexistence of global solutions for the generalized IMBq equation”, Nonlinear Anal., Theory Methods Appl., 36:8 (1999), 961–980 | DOI | MR | Zbl

[6] S. Wang, G. Chen, “Small amplutude solutions of the generalized IMBq equation”, J. Math. Anal. Appl., 274:2 (2002), 846–866 | DOI | MR | Zbl

[7] R. Xu, Y. Liu, “Global existence and blow-up of solutions for generalized Pochhammer–Chree equations”, Acta Math. Sci. Ser. B Engl. Ed., 30:5 (2010), 1793–1807 | DOI | MR | Zbl

[8] A. A. Zamyshlyaeva, A. V. Yuzeeva, “Nachalno-konechnaya zadacha dlya uravneniya Bussineska–Lyava”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2010, no. 5, 23–31

[9] A. A. Zamyshlyaeva, “Nachalno-konechnaya zadacha dlya neodnorodnogo uravneniya Bussineska–Lyava”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2011, no. 10, 22–29

[10] E. A. Utkina, “Teorema edinstvennosti resheniya odnoi zadachi Dirikhle”, Izv. vuzov. Matem., 2011, no. 5, 62–67 | MR

[11] E. A. Utkina, “Zadacha s usloviyami na vsei granitse nekharakteristicheskoi oblasti dlya odnogo uravneniya chetvertogo poryadka”, Dokl. RAN, 439:4 (2011), 597–599 | MR | Zbl

[12] A. A. Zamyshlyaeva, O. N. Tsyplenkova, “Optimalnoe upravlenie resheniyami nachalno-konechnoi zadachi dlya uravneniya Bussineska–Lyava”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 11, 13–24

[13] M. V. Plekhanova, A. F. Islamova, “Zadachi s zhestkim smeshannym upravleniem dlya linearizovannogo uravneniya Bussineska”, Differents. uravneniya, 48:4 (2012), 565–576 | MR | Zbl

[14] L. S. Pulkina, Zadachi s neklassicheskimi usloviyami dlya giperbolicheskikh uravnenii, Izd-vo “Samarskii universitet”, Samara, 2012

[15] K. Longren, “Eksperimentalnye issledovaniya solitonov v nelineinykh liniyakh peredachi s dispersiei”, Solitony v deistvii, Mir, M., 1981, 138–162

[16] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR | Zbl

[17] A. Bers, F. Dzhon, M. Shekhter, Uravneniya s chastnymi proizvodnymi, Mir, M., 1966 | MR | Zbl

[18] N. A. Larkin, V. A. Novikov, N. N. Yanenko, Nelineinye uravneniya peremennogo tipa, Nauka, Novosibirsk, 1983 | MR | Zbl

[19] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR | Zbl

[20] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR | Zbl