Oscillation of the Measure of Irrationality Function in the Multidimensional Case
Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 102-120
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that, for almost all pairs of $n\times m$ matrices $\Theta$, $\Theta'$, in the cases $m=1$ and $n=2$ or $m\ge2$ and $n=1$, the difference between the measure of irrationality functions $\psi_\Theta-\psi_{\Theta'}$ oscillates an infinite number of times as $t\to+\infty$.
Keywords:
measure of irrationality function of a matrix, oscillation of a function, algebraically independent real numbers, Borel–Cantelli sequence.
Mots-clés : Lebesgue measure
Mots-clés : Lebesgue measure
@article{MZM_2016_99_1_a9,
author = {D. O. Shatskov},
title = {Oscillation of the {Measure} of {Irrationality} {Function} in the {Multidimensional} {Case}},
journal = {Matemati\v{c}eskie zametki},
pages = {102--120},
year = {2016},
volume = {99},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a9/}
}
D. O. Shatskov. Oscillation of the Measure of Irrationality Function in the Multidimensional Case. Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 102-120. http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a9/
[1] I. D. Kan, N. G. Moshchevitin, “Approximations to two real numbers”, Unif. Distrib. Theory, 5:2 (2010), 79–86 | MR | Zbl
[2] A. Ya. Khinchin, Tsepnye drobi, GIFML, M., 1960 | MR | Zbl
[3] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, The Clarendon Press, Oxford, 1979 | MR | Zbl
[4] J. Shuster, “On the Borel–Cantelli problem”, Canad. Math. Bull., 13:2 (1970), 273–275 | DOI | MR | Zbl