Oscillation of the Measure of Irrationality Function in the Multidimensional Case
Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 102-120
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that, for almost all pairs of $n\times m$ matrices $\Theta$, $\Theta'$, in the cases $m=1$ and $n=2$ or $m\ge2$ and $n=1$, the difference between the measure of irrationality functions $\psi_\Theta-\psi_{\Theta'}$ oscillates an infinite number of times as $t\to+\infty$.
Keywords:
measure of irrationality function of a matrix, oscillation of a function, algebraically independent real numbers, Borel–Cantelli sequence.
Mots-clés : Lebesgue measure
Mots-clés : Lebesgue measure
@article{MZM_2016_99_1_a9,
author = {D. O. Shatskov},
title = {Oscillation of the {Measure} of {Irrationality} {Function} in the {Multidimensional} {Case}},
journal = {Matemati\v{c}eskie zametki},
pages = {102--120},
publisher = {mathdoc},
volume = {99},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a9/}
}
D. O. Shatskov. Oscillation of the Measure of Irrationality Function in the Multidimensional Case. Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 102-120. http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a9/