Oscillation of the Measure of Irrationality Function in the Multidimensional Case
Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 102-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for almost all pairs of $n\times m$ matrices $\Theta$$\Theta'$, in the cases $m=1$ and $n=2$ or $m\ge2$ and $n=1$, the difference between the measure of irrationality functions $\psi_\Theta-\psi_{\Theta'}$ oscillates an infinite number of times as $t\to+\infty$.
Keywords: measure of irrationality function of a matrix, oscillation of a function, algebraically independent real numbers, Borel–Cantelli sequence.
Mots-clés : Lebesgue measure
@article{MZM_2016_99_1_a9,
     author = {D. O. Shatskov},
     title = {Oscillation of the {Measure} of {Irrationality} {Function} in the {Multidimensional} {Case}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {102--120},
     publisher = {mathdoc},
     volume = {99},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a9/}
}
TY  - JOUR
AU  - D. O. Shatskov
TI  - Oscillation of the Measure of Irrationality Function in the Multidimensional Case
JO  - Matematičeskie zametki
PY  - 2016
SP  - 102
EP  - 120
VL  - 99
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a9/
LA  - ru
ID  - MZM_2016_99_1_a9
ER  - 
%0 Journal Article
%A D. O. Shatskov
%T Oscillation of the Measure of Irrationality Function in the Multidimensional Case
%J Matematičeskie zametki
%D 2016
%P 102-120
%V 99
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a9/
%G ru
%F MZM_2016_99_1_a9
D. O. Shatskov. Oscillation of the Measure of Irrationality Function in the Multidimensional Case. Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 102-120. http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a9/

[1] I. D. Kan, N. G. Moshchevitin, “Approximations to two real numbers”, Unif. Distrib. Theory, 5:2 (2010), 79–86 | MR | Zbl

[2] A. Ya. Khinchin, Tsepnye drobi, GIFML, M., 1960 | MR | Zbl

[3] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, The Clarendon Press, Oxford, 1979 | MR | Zbl

[4] J. Shuster, “On the Borel–Cantelli problem”, Canad. Math. Bull., 13:2 (1970), 273–275 | DOI | MR | Zbl