On Laplace Invariants for Equations with Dominating Third-Order Partial Derivative and Two Independent Variables
Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 89-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

Laplace invariants are constructed and the constitutive equations are written in terms of them. Classes of equations which admit four-dimensional Lie algebras are distinguished.
Mots-clés : Laplace invariant, constitutive equations.
Keywords: Lie algebra
@article{MZM_2016_99_1_a7,
     author = {A. N. Mironov and L. B. Mironova},
     title = {On {Laplace} {Invariants} for {Equations} with {Dominating} {Third-Order} {Partial} {Derivative} and {Two} {Independent} {Variables}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {89--96},
     publisher = {mathdoc},
     volume = {99},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a7/}
}
TY  - JOUR
AU  - A. N. Mironov
AU  - L. B. Mironova
TI  - On Laplace Invariants for Equations with Dominating Third-Order Partial Derivative and Two Independent Variables
JO  - Matematičeskie zametki
PY  - 2016
SP  - 89
EP  - 96
VL  - 99
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a7/
LA  - ru
ID  - MZM_2016_99_1_a7
ER  - 
%0 Journal Article
%A A. N. Mironov
%A L. B. Mironova
%T On Laplace Invariants for Equations with Dominating Third-Order Partial Derivative and Two Independent Variables
%J Matematičeskie zametki
%D 2016
%P 89-96
%V 99
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a7/
%G ru
%F MZM_2016_99_1_a7
A. N. Mironov; L. B. Mironova. On Laplace Invariants for Equations with Dominating Third-Order Partial Derivative and Two Independent Variables. Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 89-96. http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a7/

[1] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[2] N. Kh. Ibragimov, “Gruppovoi analiz obyknovennykh differentsialnykh uravnenii i printsip invariantnosti v matematicheskoi fizike (k 150-letiyu so dnya rozhdeniya Sofusa Li)”, UMN, 47:4 (1992), 83–144 | MR | Zbl

[3] F. Trikomi, Lektsii po uravneniyam v chastnykh proizvodnykh, IL, M., 1957 | MR | Zbl

[4] O. M. Dzhokhadze, “Ob invariantakh Laplasa dlya nekotorykh klassov lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh”, Differents. uravneniya, 40:1 (2004), 58–68 | MR | Zbl

[5] A. N. Mironov, “Nekotorye klassy uravnenii Bianki tretego poryadka”, Matem. zametki, 94:3 (2013), 389–400 | DOI | MR | Zbl

[6] A. P. Soldatov, M. Kh. Shkhanukov, “Kraevye zadachi s obschim nelokalnym usloviem A. A. Samarskogo dlya psevdoparabolicheskikh uravnenii vysokogo poryadka”, Dokl. AN SSSR, 297:3 (1987), 547–552 | MR

[7] V. I. Zhegalov, E. A. Utkina, “Ob odnom psevdoparabolicheskom uravnenii tretego poryadka”, Izv. vuzov. Matem., 1999, no. 10, 73–76 | MR | Zbl

[8] O. M. Dzhokhadze, “Vliyanie mladshikh chlenov na korrektnost postanovki kharakteristicheskikh zadach dlya giperbolicheskikh uravnenii tretego poryadka”, Matem. zametki, 74:4 (2003), 517–528 | DOI | MR | Zbl

[9] T. D. Dzhuraev, Ya. Popëlek, “O kanonicheskikh vidakh uravnenii s chastnymi proizvodnymi tretego poryadka”, UMN, 44:4 (1989), 237–238 | MR | Zbl

[10] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995 | Zbl

[11] A. M. Nakhushev, Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006 | Zbl

[12] E. A. Utkina, “Ob odnom uravnenii v chastnykh proizvodnykh s singulyarnymi koeffitsientami”, Izv. vuzov. Matem., 2006, no. 9, 67–70 | MR