Contact Lie Form and Concircular Geometry of Locally Conformally Quasi-Sasakian Manifolds
Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 42-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a class of almost contact metric structures admitting a locally concircular transformation into a quasi-Sasakian structure, namely, locally concircularly quasi-Sasakian structures. We obtain a criterion that singles out this subclass of structures from the class of locally conformally quasi-Sasakian structures. Some applications and generalizations of this result are obtained.
Keywords: almost contact structure, concircular transformation, quasi-Sasakian manifold.
Mots-clés : quasi-Sasakian structure, conformal transformation, contact Lie form
@article{MZM_2016_99_1_a4,
     author = {V. F. Kirichenko and E. A. Pol'kina},
     title = {Contact {Lie} {Form} and {Concircular} {Geometry} of {Locally} {Conformally} {Quasi-Sasakian} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {42--54},
     publisher = {mathdoc},
     volume = {99},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a4/}
}
TY  - JOUR
AU  - V. F. Kirichenko
AU  - E. A. Pol'kina
TI  - Contact Lie Form and Concircular Geometry of Locally Conformally Quasi-Sasakian Manifolds
JO  - Matematičeskie zametki
PY  - 2016
SP  - 42
EP  - 54
VL  - 99
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a4/
LA  - ru
ID  - MZM_2016_99_1_a4
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%A E. A. Pol'kina
%T Contact Lie Form and Concircular Geometry of Locally Conformally Quasi-Sasakian Manifolds
%J Matematičeskie zametki
%D 2016
%P 42-54
%V 99
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a4/
%G ru
%F MZM_2016_99_1_a4
V. F. Kirichenko; E. A. Pol'kina. Contact Lie Form and Concircular Geometry of Locally Conformally Quasi-Sasakian Manifolds. Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 42-54. http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a4/

[1] K. Yano, “Concircular geometry I. Concircular transformations”, Proc. Imp. Acad. Tokyo, 16:6 (1940), 195–200 | DOI | MR | Zbl

[2] D. E. Blair, “The theory of quasi-Sasakian structures”, J. Differential Geometry, 1 (1967), 331–345 | MR | Zbl

[3] V. F. Kirichenko, N. S. Baklashova, “Geometriya kontaktnoi formy Li i kontaktnyi analog teoremy Ikuty”, Matem. zametki, 82:3 (2007), 347–360 | DOI | MR | Zbl

[4] Z. Olszak, “Locally conformal almost cosymplectic manifolds”, Colloq. Math., 57:1 (1989), 74–87 | MR | Zbl

[5] V. F Kirichenko, Differentsialno-geometricheskie struktury na mnogoobraziyakh, MPGU, M., 2003

[6] S. Tanno, “Quasi-Sasakian structures of rank $2p+1$”, J. Differential Geometry, 5 (1971), 317–324 | MR | Zbl

[7] S. Kanemaki, “Quasi-Sasakian manifolds”, Tôhoku Math. J. (2), 29:2 (1977), 227–233 | DOI | MR | Zbl

[8] V. F. Kirichenko, A. R. Rustanov, “Differentsialnaya geometriya kvazi-sasakievykh mnogoobrazii”, Matem. sb., 193:8 (2002), 71–100 | DOI | MR | Zbl

[9] V. F. Kirichenko, E. V. Rodina, “O geometrii transsasakievykh i pochti transsasakievykh mnogoobrazii”, Fundament. i prikl. matem., 3:3 (1997), 837–846 | MR | Zbl

[10] V. F. Kirichenko, L. I. Vlasova, “Kontsirkulyarnaya geometriya priblizhenno kelerovykh mnogoobrazii”, Matem. sb., 193:5 (2002), 53–76 | DOI | MR | Zbl

[11] V. F. Kirichenko, “O geometrii mnogoobrazii Kenmotsu”, Dokl. RAN, 380:5 (2001), 585–587 | MR | Zbl

[12] K. Kenmotsu, “A class of almost contact Riemannian manifolds”, Tôhoku Math. J. (2), 24:1 (1972), 93–103 | DOI | MR | Zbl

[13] N. S. Baklashova, “Nekotorye svoistva krivizny $lc\mathscr Q\mathscr S$-mnogoobrazii”, Nauch. tr. MPGU. Ser. Estestv. nauki, GNO Izd-vo “Prometei” MPGU, M., 2006, 25–30