Determination of the Jump of a Function of Generalized Bounded Variation from the Derivatives of the Partial Sums of Its Fourier Series
Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 35-41
Voir la notice de l'article provenant de la source Math-Net.Ru
It is established that the formulas determining the jump of a periodic function from the derivatives of the partial sums of its Fourier series and valid for functions of harmonic bounded variation (the HBV class) possibly will not hold for functions of $\Phi$-bounded variation (in the sense of Schramm) if this class is wider than the HBV class.
Keywords:
jump of a periodic function, function of harmonic bounded variation, function of $\Phi$-bounded variation, partial sum, Fourier series.
@article{MZM_2016_99_1_a3,
author = {A. A. Kelzon},
title = {Determination of the {Jump} of a {Function} of {Generalized} {Bounded} {Variation} from the {Derivatives} of the {Partial} {Sums} of {Its} {Fourier} {Series}},
journal = {Matemati\v{c}eskie zametki},
pages = {35--41},
publisher = {mathdoc},
volume = {99},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a3/}
}
TY - JOUR AU - A. A. Kelzon TI - Determination of the Jump of a Function of Generalized Bounded Variation from the Derivatives of the Partial Sums of Its Fourier Series JO - Matematičeskie zametki PY - 2016 SP - 35 EP - 41 VL - 99 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a3/ LA - ru ID - MZM_2016_99_1_a3 ER -
%0 Journal Article %A A. A. Kelzon %T Determination of the Jump of a Function of Generalized Bounded Variation from the Derivatives of the Partial Sums of Its Fourier Series %J Matematičeskie zametki %D 2016 %P 35-41 %V 99 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a3/ %G ru %F MZM_2016_99_1_a3
A. A. Kelzon. Determination of the Jump of a Function of Generalized Bounded Variation from the Derivatives of the Partial Sums of Its Fourier Series. Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 35-41. http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a3/