Determination of the Jump of a Function of Generalized Bounded Variation from the Derivatives of the Partial Sums of Its Fourier Series
Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 35-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is established that the formulas determining the jump of a periodic function from the derivatives of the partial sums of its Fourier series and valid for functions of harmonic bounded variation (the HBV class) possibly will not hold for functions of $\Phi$-bounded variation (in the sense of Schramm) if this class is wider than the HBV class.
Keywords: jump of a periodic function, function of harmonic bounded variation, function of $\Phi$-bounded variation, partial sum, Fourier series.
@article{MZM_2016_99_1_a3,
     author = {A. A. Kelzon},
     title = {Determination of the {Jump} of a {Function} of {Generalized} {Bounded} {Variation} from the {Derivatives} of the {Partial} {Sums} of {Its} {Fourier} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {35--41},
     publisher = {mathdoc},
     volume = {99},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a3/}
}
TY  - JOUR
AU  - A. A. Kelzon
TI  - Determination of the Jump of a Function of Generalized Bounded Variation from the Derivatives of the Partial Sums of Its Fourier Series
JO  - Matematičeskie zametki
PY  - 2016
SP  - 35
EP  - 41
VL  - 99
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a3/
LA  - ru
ID  - MZM_2016_99_1_a3
ER  - 
%0 Journal Article
%A A. A. Kelzon
%T Determination of the Jump of a Function of Generalized Bounded Variation from the Derivatives of the Partial Sums of Its Fourier Series
%J Matematičeskie zametki
%D 2016
%P 35-41
%V 99
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a3/
%G ru
%F MZM_2016_99_1_a3
A. A. Kelzon. Determination of the Jump of a Function of Generalized Bounded Variation from the Derivatives of the Partial Sums of Its Fourier Series. Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 35-41. http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a3/

[1] B. I. Golubov, “Opredelenie skachka funktsii ogranichennoi $p$-variatsii po ee ryadu Fure”, Matem. zametki, 12:1 (1972), 19–28 | Zbl

[2] N. Wiener, “The quadratic variation of a function and its Fourier coefficients”, J. Math. Phys., 3:2 (1924), 72–94 | DOI | Zbl

[3] L. Fejér, “Über die Bestimmung des Sprunges der Funktion aus Fourier-reihe”, J. Reine Angew. Math., 142:1 (1912), 165–188 | MR | Zbl

[4] P. Czillag, “Über die Fourierkonstanten einer Funktion von Beschränkter Schwankung”, Mat. Phys. Lapok, 27 (1918), 301–308

[5] A. Zigmund, Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR | Zbl

[6] M. Avdispahić, “On the determination of the jump of a function by its Fourier series”, Acta Math. Hungar., 48:3 (1986), 267–271 | DOI | MR | Zbl

[7] G. Kvernadze, “Determination of the jumps of a bounded function by its Fourier series”, J. Approx. Theory, 92:2 (1998), 167–190 | DOI | MR | Zbl

[8] D. Waterman, “On convergence of Fourier series of functions of generalized bounded variation”, Studia Math., 44:2 (1972), 107–117 | MR | Zbl

[9] M. Schramm, “Functions of $\Phi$-bounded variation and Riemann–Stieltjes integration”, Trans. Amer. Math. Soc., 287:1 (1985), 49–63 | MR | Zbl

[10] L. C. Young, “Sur une généralisation de la notion de variation de puissance $p$-ième bornée au sens de M. Wiener, et sur la convergence des séries de Fourier”, C. R. Acad. Sci., Paris, 204:7 (1937), 470–472 | Zbl

[11] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nevskii dialekt, SPb., 2004 | MR | Zbl

[12] A. A. Kelzon, “Ob opredelenii skachka funktsii $\Phi$-ogranichennoi variatsii cherez proizvodnye ot chastnykh summ ryada Fure”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 17-i mezhdunarodnoi Saratovskoi zimnei shkoly, OOO Izd-vo “Nauchnaya kniga”, Saratov, 2014, 116–118