Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_99_1_a3, author = {A. A. Kelzon}, title = {Determination of the {Jump} of a {Function} of {Generalized} {Bounded} {Variation} from the {Derivatives} of the {Partial} {Sums} of {Its} {Fourier} {Series}}, journal = {Matemati\v{c}eskie zametki}, pages = {35--41}, publisher = {mathdoc}, volume = {99}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a3/} }
TY - JOUR AU - A. A. Kelzon TI - Determination of the Jump of a Function of Generalized Bounded Variation from the Derivatives of the Partial Sums of Its Fourier Series JO - Matematičeskie zametki PY - 2016 SP - 35 EP - 41 VL - 99 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a3/ LA - ru ID - MZM_2016_99_1_a3 ER -
%0 Journal Article %A A. A. Kelzon %T Determination of the Jump of a Function of Generalized Bounded Variation from the Derivatives of the Partial Sums of Its Fourier Series %J Matematičeskie zametki %D 2016 %P 35-41 %V 99 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a3/ %G ru %F MZM_2016_99_1_a3
A. A. Kelzon. Determination of the Jump of a Function of Generalized Bounded Variation from the Derivatives of the Partial Sums of Its Fourier Series. Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 35-41. http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a3/
[1] B. I. Golubov, “Opredelenie skachka funktsii ogranichennoi $p$-variatsii po ee ryadu Fure”, Matem. zametki, 12:1 (1972), 19–28 | Zbl
[2] N. Wiener, “The quadratic variation of a function and its Fourier coefficients”, J. Math. Phys., 3:2 (1924), 72–94 | DOI | Zbl
[3] L. Fejér, “Über die Bestimmung des Sprunges der Funktion aus Fourier-reihe”, J. Reine Angew. Math., 142:1 (1912), 165–188 | MR | Zbl
[4] P. Czillag, “Über die Fourierkonstanten einer Funktion von Beschränkter Schwankung”, Mat. Phys. Lapok, 27 (1918), 301–308
[5] A. Zigmund, Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR | Zbl
[6] M. Avdispahić, “On the determination of the jump of a function by its Fourier series”, Acta Math. Hungar., 48:3 (1986), 267–271 | DOI | MR | Zbl
[7] G. Kvernadze, “Determination of the jumps of a bounded function by its Fourier series”, J. Approx. Theory, 92:2 (1998), 167–190 | DOI | MR | Zbl
[8] D. Waterman, “On convergence of Fourier series of functions of generalized bounded variation”, Studia Math., 44:2 (1972), 107–117 | MR | Zbl
[9] M. Schramm, “Functions of $\Phi$-bounded variation and Riemann–Stieltjes integration”, Trans. Amer. Math. Soc., 287:1 (1985), 49–63 | MR | Zbl
[10] L. C. Young, “Sur une généralisation de la notion de variation de puissance $p$-ième bornée au sens de M. Wiener, et sur la convergence des séries de Fourier”, C. R. Acad. Sci., Paris, 204:7 (1937), 470–472 | Zbl
[11] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nevskii dialekt, SPb., 2004 | MR | Zbl
[12] A. A. Kelzon, “Ob opredelenii skachka funktsii $\Phi$-ogranichennoi variatsii cherez proizvodnye ot chastnykh summ ryada Fure”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 17-i mezhdunarodnoi Saratovskoi zimnei shkoly, OOO Izd-vo “Nauchnaya kniga”, Saratov, 2014, 116–118