An Algorithm for Constructing Multidimensional Continued Fractions and Linear Dependence of Numbers
Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 26-34
Cet article a éte moissonné depuis la source Math-Net.Ru
The Güting algorithm for constructing multidimensional continued fractions is considered. It is proved that, in the case of dimension $2$, this algorithm can be used to find the coefficients of the linear dependence of numbers; a criterion is given for verifying that the partial quotients furnished by the algorithm are, indeed, elements of the continued fraction for the expanded (generally irrational) numbers.
Keywords:
multidimensional continued fraction, Güting algorithm, linear dependence of numbers, irrational number.
Mots-clés : partial quotient
Mots-clés : partial quotient
@article{MZM_2016_99_1_a2,
author = {E. B. Borodina},
title = {An {Algorithm} for {Constructing} {Multidimensional} {Continued} {Fractions} and {Linear} {Dependence} of {Numbers}},
journal = {Matemati\v{c}eskie zametki},
pages = {26--34},
year = {2016},
volume = {99},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a2/}
}
E. B. Borodina. An Algorithm for Constructing Multidimensional Continued Fractions and Linear Dependence of Numbers. Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 26-34. http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a2/
[1] R. Güting, “Zur Verallgemeinerung des Kettenbruchalgorithmus. I”, J. Reine Angew. Math., 278/279 (1975), 165–173 ; “Zur Verallgemeinerung des Kettenbruchalgorithmus. II”, J. Reine Angew. Math., 281 (1976), 184–198 ; “Zur Verallgemeinerung des Kettenbruchalgorithmus. III”, J. Reine Angew. Math., 283/284 (1976), 384–387 | MR | Zbl | MR | Zbl | MR | Zbl
[2] F. Schweiger, “Über einen Algorithmus von R. Güting”, J. Reine Angew. Math, 293/294 (1977), 263–270 | MR | Zbl
[3] D. H. Lehmer, “Euclid's algorithm for large numbers”, Amer. Math. Monthly, 45:4 (1938), 227–233 | DOI | MR | Zbl