The Axiom of Sasakian Hypersurfaces and Six-Dimensional Hermitian Submanifolds of the Octonion Algebra
Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 140-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: axiom of Sasakian hypersurfaces, six-dimensional Hermitian submanifold of the octonion algebra, three-vector cross product, Ricci-type submanifold.
@article{MZM_2016_99_1_a11,
     author = {M. B. Banaru},
     title = {The {Axiom} of {Sasakian} {Hypersurfaces} and {Six-Dimensional} {Hermitian} {Submanifolds} of the {Octonion} {Algebra}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {140--144},
     publisher = {mathdoc},
     volume = {99},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a11/}
}
TY  - JOUR
AU  - M. B. Banaru
TI  - The Axiom of Sasakian Hypersurfaces and Six-Dimensional Hermitian Submanifolds of the Octonion Algebra
JO  - Matematičeskie zametki
PY  - 2016
SP  - 140
EP  - 144
VL  - 99
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a11/
LA  - ru
ID  - MZM_2016_99_1_a11
ER  - 
%0 Journal Article
%A M. B. Banaru
%T The Axiom of Sasakian Hypersurfaces and Six-Dimensional Hermitian Submanifolds of the Octonion Algebra
%J Matematičeskie zametki
%D 2016
%P 140-144
%V 99
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a11/
%G ru
%F MZM_2016_99_1_a11
M. B. Banaru. The Axiom of Sasakian Hypersurfaces and Six-Dimensional Hermitian Submanifolds of the Octonion Algebra. Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 140-144. http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a11/

[1] V. F. Kirichenko, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1994, no. 3, 6–13 | MR | Zbl

[2] M. B. Banaru, Matem. sb., 194:8 (2003), 13–24 | DOI | MR | Zbl

[3] V. F. Kirichenko, Differentsialno-geometricheskie struktury na mnogoobraziyakh, MPGU, M., 2003

[4] A. Gray, Trans. Amer. Math. Soc., 141 (1969), 465–504 | DOI | MR | Zbl

[5] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progr. Math., 203, Birkhäuser Boston, Boston, MA, 2002 | MR | Zbl

[6] V. F. Kiritchenko, C. R. Acad. Sci. Paris Sér. I Math., 295:12 (1982), 673–676 | MR | Zbl

[7] D. E. Blair, J. Differential Geometry, 1, 331–345 | MR | Zbl

[8] L. V. Stepanova, Nauchn. tr. MPGU im. V. I. Lenina, 1995, 187–191

[9] A. Abu-Saleem, M. Banaru, An. Univ. Oradea Fasc. Mat., 17:2 (2010), 201–208 | MR | Zbl

[10] M. Banaru, J. Sichuan Univ. Sci. Eng., 25:4 (2012), 1–5

[11] V. F. Kirichenko, Izv. vuzov. Matem., 1980, no. 8, 32–38 | MR | Zbl

[12] M. Banaru, Annuaire Univ. Sofia Fac. Math. Inform., 95 (2004), 125–131 | MR | Zbl

[13] M. B. Banaru, Sib. matem. zhurn., 44:5 (2003), 981–991 | MR | Zbl

[14] M. Banaru, Kyungpook Math. J., 43:1 (2003), 27–35 | MR | Zbl