On Automorphisms of Irreducible Linear Groups with an Abelian Sylow $2$-Subgroup
Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 121-139

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma=AG$ be a finite group, where $G\triangleleft\Gamma$, $(|G|,|A|)=1$, and let $A$ be a nonprimary subgroup of odd order which is not normal in $\Gamma$. The Sylow $2$-subgroup of the group $G$ is Abelian, and $C_G(a)=C_G(A)$ for every element $a\in A^{\#}$, where $A^{\#}$ stands for the set of nonidentity elements of $A$. Suppose that the group $G$ has a faithful irreducible complex character of degree $n$ which is $a$-invariant for at least one element $a\in A^{\#}$. In the present paper, it is proved that $n$ is divisible by a power of a prime with exponent $f>1$ such that $f\equiv -1$ or $1\,(\operatorname{mod}|A|)$.
Keywords: irreducible linear group, Abelian Sylow $2$-subgroup, faithful, irreducible complex character.
@article{MZM_2016_99_1_a10,
     author = {A. A. Yadchenko},
     title = {On {Automorphisms} of {Irreducible} {Linear} {Groups} with an {Abelian} {Sylow} $2${-Subgroup}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {121--139},
     publisher = {mathdoc},
     volume = {99},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a10/}
}
TY  - JOUR
AU  - A. A. Yadchenko
TI  - On Automorphisms of Irreducible Linear Groups with an Abelian Sylow $2$-Subgroup
JO  - Matematičeskie zametki
PY  - 2016
SP  - 121
EP  - 139
VL  - 99
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a10/
LA  - ru
ID  - MZM_2016_99_1_a10
ER  - 
%0 Journal Article
%A A. A. Yadchenko
%T On Automorphisms of Irreducible Linear Groups with an Abelian Sylow $2$-Subgroup
%J Matematičeskie zametki
%D 2016
%P 121-139
%V 99
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a10/
%G ru
%F MZM_2016_99_1_a10
A. A. Yadchenko. On Automorphisms of Irreducible Linear Groups with an Abelian Sylow $2$-Subgroup. Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 121-139. http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a10/