On Automorphisms of Irreducible Linear Groups with an Abelian Sylow $2$-Subgroup
Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 121-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma=AG$ be a finite group, where $G\triangleleft\Gamma$, $(|G|,|A|)=1$, and let $A$ be a nonprimary subgroup of odd order which is not normal in $\Gamma$. The Sylow $2$-subgroup of the group $G$ is Abelian, and $C_G(a)=C_G(A)$ for every element $a\in A^{\#}$, where $A^{\#}$ stands for the set of nonidentity elements of $A$. Suppose that the group $G$ has a faithful irreducible complex character of degree $n$ which is $a$-invariant for at least one element $a\in A^{\#}$. In the present paper, it is proved that $n$ is divisible by a power of a prime with exponent $f>1$ such that $f\equiv -1$ or $1\,(\operatorname{mod}|A|)$.
Keywords: irreducible linear group, Abelian Sylow $2$-subgroup, faithful, irreducible complex character.
@article{MZM_2016_99_1_a10,
     author = {A. A. Yadchenko},
     title = {On {Automorphisms} of {Irreducible} {Linear} {Groups} with an {Abelian} {Sylow} $2${-Subgroup}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {121--139},
     publisher = {mathdoc},
     volume = {99},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a10/}
}
TY  - JOUR
AU  - A. A. Yadchenko
TI  - On Automorphisms of Irreducible Linear Groups with an Abelian Sylow $2$-Subgroup
JO  - Matematičeskie zametki
PY  - 2016
SP  - 121
EP  - 139
VL  - 99
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a10/
LA  - ru
ID  - MZM_2016_99_1_a10
ER  - 
%0 Journal Article
%A A. A. Yadchenko
%T On Automorphisms of Irreducible Linear Groups with an Abelian Sylow $2$-Subgroup
%J Matematičeskie zametki
%D 2016
%P 121-139
%V 99
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a10/
%G ru
%F MZM_2016_99_1_a10
A. A. Yadchenko. On Automorphisms of Irreducible Linear Groups with an Abelian Sylow $2$-Subgroup. Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 121-139. http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a10/

[1] N. Itô, “On a theorem of N. F. Blichfeldt”, Nagoya Math. J., 5 (1953), 75–77 | MR | Zbl

[2] D. L. Winter, “On finite solvable linear groups”, Illinois J. Math., 15:3 (1971), 425–428 | MR | Zbl

[3] I. M. Isaacs, “Characters of solvable groups”, The Santa Cruz Conference on Finite Groups, Proc. Symp. Pure Math., 37, Amer. Math. Soc., Providence, RI, 1980, 377–384 | DOI | MR | Zbl

[4] D. L. Winter, “Solvability of certain $p$-solvable linear groups of finite order”, Pacific J. Math., 34:3 (1970), 827–835 | DOI | MR | Zbl

[5] D. L. Winter, “On the structure of certain $p$-solvable linear groups”, J. Algebra, 31:3 (1974), 543–546 | DOI | MR | Zbl

[6] I. M. Isaacs, “Complex $p$-solvable linear groups”, J. Algebra, 24:3 (1973), 513–530 | DOI | MR | Zbl

[7] A. A. Yadchenko, “O normalnykh khollovskikh podgruppakh $\pi$-obosoblennykh lineinykh grupp”, Vestsi NAN Belarusi. Ser. fiz.-matem. navuk, 2005, no. 1, 35–39 | MR

[8] A. A. Yadchenko, “Avtomorfizmy i normalnye polugruppy lineinykh grupp”, Matem. zametki, 82:3 (2007), 469–476 | DOI | MR | Zbl

[9] B. Newton, “On the degrees of complex $p$-solvable linear groups”, J. Algebra, 288:2 (2005), 384–391 | DOI | MR | Zbl

[10] A. A. Yadchenko, “O $\pi$-razreshimykh neprivodimykh lineinykh gruppakh s khollovoi $TI$-podgruppoi nechetnogo poryadka. I”, Tr. In-ta matem., 16:2 (2008), 118–130 | Zbl

[11] A. A. Yadchenko, “O $\pi$-razreshimykh neprivodimykh lineinykh gruppakh s khollovoi $TI$-podgruppoi nechetnogo poryadka. II”, Tr. In-ta matem., 17:2 (2009), 94–104

[12] A. A. Yadchenko, “O $\pi$-razreshimykh neprivodimykh lineinykh gruppakh s khollovoi $TI$-podgruppoi nechetnogo poryadka. III”, Tr. In-ta matem., 18:2 (2010), 99–114 | Zbl

[13] A. A. Yadchenko, “On irreducible linear groups of nonprimary degree”, ISRN Algebra, 2011, Article ID 868096 | DOI | MR | Zbl

[14] A. A. Yadchenko, “Razreshimye neprivodimye lineinye gruppy proizvolnoi stepeni s khollovskoi $TI$-podgruppoi”, Matem. zametki, 48:2 (1990), 137–144 | MR | Zbl

[15] D. Gorenstein, Finite Groups, Harper Row, New York, 1968 | MR | Zbl

[16] I. M. Isaacs, Character Theory of Finite Groups, Pure Appl. Math., 69, Academic Press, New York, 1976 | MR | Zbl

[17] Z. Janko, “A new finite simple groups with abelian Sylow $2$-subgroups and its characterisation”, J. Algebra, 3:2 (1966), 147–186 | DOI | MR | Zbl

[18] Z. Janko, J. G. Thompson, “On a class of finite simple groups of Ree”, J. Algebra, 4:2 (1966), 274–292 | DOI | MR | Zbl

[19] H. N. Ward, “On Rees series of simple groups”, Trans. Amer. Math. Soc., 121:1 (1966), 62–89 | MR | Zbl

[20] P. B. Kleidman, “The maximal subgroups of the Chevalley groups $G_2(q)$ with $q$ odd, the Ree groups $^2G_{2}(q)$ and their automorphism groups”, J. Algebra, 117:1 (1988), 30–71 | DOI | MR | Zbl

[21] B. Huppert, Endliche Gruppen. I, Grundlehren Math. Wiss., 134, Springer-Verlag, Berlin, 1967 | MR | Zbl

[22] M. M. Guterman, “On $ABA$-groups of finite order”, Trans. Amer. Math. Soc., 139 (1969), 109–143 | MR | Zbl

[23] G. Glauberman, “Correspodences of characters for relatively prime operator groups”, Canad. J. Math., 1968, no. 20, 1465–1488 | DOI | MR | Zbl

[24] S. A. Chunikhin, Podgruppy konechnykh grupp, Nauka i tekhnika, Minsk, 1964 | MR | Zbl

[25] A. I. Starostin, “O gruppakh Frobeniusa”, Ukr. matem. zhurn., 23:3 (1971), 629–639 | MR | Zbl

[26] I. M. Isaacs, G. R. Robinson, “Linear constituens of certain character restrictions”, Proc. Amer. Math. Soc., 126:9 (1998), 2615–2617 | DOI | MR | Zbl

[27] J. H. Walter, “The characterisation of finite groups with abelian Sylow $2$-subgroups”, Ann. of Math. (2), 89:3 (1969), 405–514 | DOI | MR | Zbl

[28] V. A. Belonogov, Predstavleniya i kharaktery v teorii konechnykh grupp, UrO AN SSSR, Sverdlovsk, 1990 | MR | Zbl

[29] A. A. Yadchenko, “O konechnykh $\pi$-razreshimykh lineinykh gruppakh”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1986, 181–207 | MR | Zbl

[30] D. Gorenstein, Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985 | MR | Zbl