Lyapunov Transformation of Differential Operators with Unbounded Operator Coefficients
Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 11-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a number of notions related to the Lyapunov transformation of linear differential operators with unbounded operator coefficients generated by a family of evolution operators. We prove statements about similar operators related to the Lyapunov transformation and describe their spectral properties. One of the main results of the paper is a similarity theorem for a perturbed differential operator with constant operator coefficient, an operator which is the generator of a bounded group of operators. For the perturbation, we consider the operator of multiplication by a summable operator function. The almost periodicity (at infinity) of the solutions of the corresponding homogeneous differential equation is established.
Keywords: Lyapunov transformation, evolution operator, perturbed differential operator, Cauchy problem, Lyapunov kinematic similarity, exponential dichotomy, splitting pair of functions, Bohl spectrum.
@article{MZM_2016_99_1_a1,
     author = {M. S. Bichegkuev},
     title = {Lyapunov {Transformation} of {Differential} {Operators} with {Unbounded} {Operator} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {11--25},
     publisher = {mathdoc},
     volume = {99},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a1/}
}
TY  - JOUR
AU  - M. S. Bichegkuev
TI  - Lyapunov Transformation of Differential Operators with Unbounded Operator Coefficients
JO  - Matematičeskie zametki
PY  - 2016
SP  - 11
EP  - 25
VL  - 99
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a1/
LA  - ru
ID  - MZM_2016_99_1_a1
ER  - 
%0 Journal Article
%A M. S. Bichegkuev
%T Lyapunov Transformation of Differential Operators with Unbounded Operator Coefficients
%J Matematičeskie zametki
%D 2016
%P 11-25
%V 99
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a1/
%G ru
%F MZM_2016_99_1_a1
M. S. Bichegkuev. Lyapunov Transformation of Differential Operators with Unbounded Operator Coefficients. Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 11-25. http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a1/

[1] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR | Zbl

[2] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1970 | MR | Zbl

[3] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR | Zbl

[4] A. G. Baskakov, “Polugruppy raznostnykh operatorov v spektralnom analize lineinykh differentsialnykh operatorov”, Funkts. analiz i ego pril., 30:3 (1996), 1–11 | DOI | MR | Zbl

[5] A. G. Baskakov, “Issledovanie lineinykh differentsialnykh uravnenii metodami spektralnoi teorii raznostnykh operatorov i lineinykh otnoshenii”, UMN, 68:1 (2013), 77–128 | DOI | MR | Zbl

[6] M. S. Bichegkuev, “K spektralnomu analizu raznostnykh i differentsialnykh operatorov v vesovykh prostranstvakh”, Matem. sb., 204:11 (2013), 3–20 | DOI | MR | Zbl

[7] M. S. Bichegkuev, “O spektre raznostnykh i differentsialnykh operatorov v vesovykh prostranstvakh”, Funkts. analiz i ego pril., 44:1 (2010), 80–83 | DOI | MR | Zbl

[8] A. G. Baskakov, “Lineinye differentsialnye operatory s neogranichennymi operatornymi koeffitsientami i polugruppy raznostnykh operatorov”, Matem. zametki, 59:6 (1996), 811–820 | DOI | MR | Zbl

[9] A. G. Baskakov, “O korrektnosti lineinykh differentsialnykh operatorov”, Matem. sb., 190:3 (1999), 3–28 | DOI | MR | Zbl

[10] M. S. Bichegkuev, “Ob usloviyakh razreshimosti raznostnykh uravnenii s nachalnym usloviem iz podprostranstva”, Sib. matem. zhurn., 51:4 (2010), 751–768 | MR | Zbl

[11] M. S. Bichegkuev, “K spektralnomu analizu differentsialnykh operatorov s neogranichennymi operatornymi koeffitsientami”, Differents. uravneniya, 51:4 (2015), 427–435 | DOI | Zbl

[12] A. Ben-Artzi, I. Gohberg, M. A. Kaashoek, “Invertibility and dichotomy of differential operators on a half-line”, J. Dynam. Differential Equations, 5:1 (1993), 1–36 | DOI | MR | Zbl

[13] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR | Zbl

[14] N. P. Erugin, Lineinye sistemy obyknovennykh differentsialnykh uravnenii, Izd-vo AN BSSR, Minsk, 1963 | MR | Zbl

[15] A. G. Baskakov, “Spektralnyi analiz differentsialnykh operatorov s neogranichennymi operatornymi koeffitsientami, raznostnye otnosheniya i polugruppy raznostnykh otnoshenii”, Izv. RAN. Ser. matem., 73:2 (2009), 3–68 | DOI | MR | Zbl

[16] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., 194, Springer-Verlag, New York, 2000 | MR | Zbl

[17] A. G. Baskakov, “Garmonicheskii i spektralnyi analiz operatorov s ogranichennymi stepenyami i ogranichennykh polugrupp operatorov na banakhovom prostranstve”, Matem. zametki, 97:2 (2015), 174–190 | DOI | MR | Zbl

[18] A. G. Baskakov, N. S. Kaluzhina, “Teorema Berlinga dlya funktsii s suschestvennym spektrom iz odnorodnykh prostranstv i stabilizatsiya reshenii parabolicheskikh uravnenii”, Matem. zametki, 92:5 (2012), 643–661 | DOI | MR | Zbl

[19] A. G. Baskakov, N. S. Kaluzhina, D. M. Polyakov, “Medlenno menyayuschiesya na beskonechnosti polugruppy operatorov”, Izv. vuzov. Matem., 2014, no. 7, 3–14 | Zbl

[20] A. G. Baskakov, “Spektralnye kriterii pochti periodichnosti reshenii funktsionalnykh uravnenii”, Matem. zametki, 24:2 (1978), 195–206 | MR | Zbl

[21] A. G. Baskakov, A. Yu. Duplischeva, “Raznostnye operatory i operatornye matritsy vtorogo poryadka”, Izv. RAN. Ser. matem., 79:2 (2015), 3–20 | DOI | MR | Zbl