A Duality Relation for Unitary Automorphisms in the Spaces of Toeplitz and Hankel Matrices
Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

The duality relation in the title of the paper is an identity between the groups of unitary automorphisms acting in the space of Toeplitz or Hankel matrices by similarity or congruence. A simple answer is given to the question why such identities can emerge.
Keywords: Toeplitz matrix, Hankel matrix, unitary matrix, backward identity matrix
Mots-clés : automorphism.
@article{MZM_2016_99_1_a0,
     author = {A. K. Abdikalykov and Kh. D. Ikramov and V. N. Chugunov},
     title = {A {Duality} {Relation} for {Unitary} {Automorphisms} in the {Spaces} of {Toeplitz} and {Hankel} {Matrices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {99},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a0/}
}
TY  - JOUR
AU  - A. K. Abdikalykov
AU  - Kh. D. Ikramov
AU  - V. N. Chugunov
TI  - A Duality Relation for Unitary Automorphisms in the Spaces of Toeplitz and Hankel Matrices
JO  - Matematičeskie zametki
PY  - 2016
SP  - 3
EP  - 10
VL  - 99
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a0/
LA  - ru
ID  - MZM_2016_99_1_a0
ER  - 
%0 Journal Article
%A A. K. Abdikalykov
%A Kh. D. Ikramov
%A V. N. Chugunov
%T A Duality Relation for Unitary Automorphisms in the Spaces of Toeplitz and Hankel Matrices
%J Matematičeskie zametki
%D 2016
%P 3-10
%V 99
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a0/
%G ru
%F MZM_2016_99_1_a0
A. K. Abdikalykov; Kh. D. Ikramov; V. N. Chugunov. A Duality Relation for Unitary Automorphisms in the Spaces of Toeplitz and Hankel Matrices. Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a0/

[1] Kh. D. Ikramov, “Unitarnye avtomorfizmy prostranstva teplitsevykh matrits”, Dokl. RAN, 456:4 (2014), 389–391 | DOI | MR | Zbl

[2] Kh. D. Ikramov, “Unitarnye avtomorfizmy prostranstva gankelevykh matrits”, Matem. zametki, 96:5 (2014), 687–696 | DOI | MR | Zbl

[3] A. K. Abdikalykov, Kh. D. Ikpamov, V. N. Chugunov, “Unitarnye kongruentsii i gankelevy matritsy”, Dokl. RAN, 457:5 (2014), 507–509 | DOI | Zbl

[4] A. K. Abdikalykov, V. N. Chugunov, Kh. D. Ikramov, “Unitary congruence automorphisms of the space of Toeplitz matrices”, Linear Multilinear Algebra, 63:6 (2015), 1195–1203 | DOI | MR | Zbl

[5] N. M. Huang, R. E. Cline, “Inversion of persymmetric matrices having Toeplitz inverses”, J. Assoc. Comput. Mach., 19:3 (1972), 437–444 | DOI | MR | Zbl

[6] T. N. E. Greville, “Toeplitz matrices with Toeplitz inverses revisited”, Linear Algebra Appl., 55 (1983), 87–92 | DOI | MR | Zbl