On the Number of Integer Points Whose First Coordinates Satisfy a Divisibility Condition on Hyperboloids of a Special Form
Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 881-886.

Voir la notice de l'article provenant de la source Math-Net.Ru

The discrete ergodic method is applied to obtain an asymptotic expression for the number of all integer points in a given bounded domain on a three-dimensional hyperboloid of genus determined by the invariants $[w,2]$, where $w$ is odd, such that the first coordinates of these points are divisible by $w$.
Keywords: discrete ergodic method, ternary quadratic form, number of classes of binary quadratic forms, integer point on a hyperboloid, asymptotic relation.
@article{MZM_2016_100_6_a9,
     author = {U. M. Pachev and R. A. Dokhov},
     title = {On the {Number} of {Integer} {Points} {Whose} {First} {Coordinates} {Satisfy} a {Divisibility} {Condition} on {Hyperboloids} of a {Special} {Form}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {881--886},
     publisher = {mathdoc},
     volume = {100},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a9/}
}
TY  - JOUR
AU  - U. M. Pachev
AU  - R. A. Dokhov
TI  - On the Number of Integer Points Whose First Coordinates Satisfy a Divisibility Condition on Hyperboloids of a Special Form
JO  - Matematičeskie zametki
PY  - 2016
SP  - 881
EP  - 886
VL  - 100
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a9/
LA  - ru
ID  - MZM_2016_100_6_a9
ER  - 
%0 Journal Article
%A U. M. Pachev
%A R. A. Dokhov
%T On the Number of Integer Points Whose First Coordinates Satisfy a Divisibility Condition on Hyperboloids of a Special Form
%J Matematičeskie zametki
%D 2016
%P 881-886
%V 100
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a9/
%G ru
%F MZM_2016_100_6_a9
U. M. Pachev; R. A. Dokhov. On the Number of Integer Points Whose First Coordinates Satisfy a Divisibility Condition on Hyperboloids of a Special Form. Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 881-886. http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a9/

[1] Yu. V. Linnik, Ergodicheskie svoistva algebraicheskikh polei, Izd-vo Leningradskogo un-ta, L., 1967 | MR

[2] B. F. Skubenko, “Asimptoticheskoe raspredelenie tselykh tochek na odnopolostnom giperboloide i ergodicheskie teoremy”, Izv. AN SSSR. Ser. matem., 26:5 (1962), 721–752 | MR | Zbl

[3] A. V. Malyshev, U. M. Pachev, “O chisle klassov tselochislennykh polozhitelnykh binarnykh kvadratichnykh form, arifmeticheskii minimum kotorykh delitsya na zadannoe chislo”, Algebra i teoriya chisel, 1979, no. 4, 53–67

[4] U. M. Pachev, “O chisle privedennykh tselochislennykh neopredelennykh binarnykh kvadratichnykh form s usloviem delimosti pervykh koeffitsientov”, Chevyshevskii sb., 4:3 (7) (2003), 92–105 | MR | Zbl

[5] U. M. Pachev, “Ob asimptotike chisla privedennykh tselochislennykh binarnykh kvadratichnykh form s usloviem delimosti pervykh koeffitsientov”, Sib. matem. zhurn., 48:2 (2007), 376–388 | MR | Zbl

[6] U. M. Pachev, “O raspredelenii tselykh tochek na nekotorykh dvupolostnykh giperboloidakh”, Issledovaniya po teorii chisel. 6, Zap. nauchn. sem. LOMI, 93, Izd-vo «Nauka», Leningrad. otd., L., 1980, 87–141 | MR | Zbl

[7] Dzh. Kassels, Ratsionalnye kvadratichnye formy, Mir, M., 1982 | MR | Zbl

[8] A. V. Malyshev, Nguen Ngor Goi, “O raspredelenii tselykh tochek na nekotorykh odnopolostnykh giperboloidakh”, Issledovaniya po teorii chisel. 8, Zap. nauchn. sem. LOMI, 121, Izd-vo «Nauka», Leningrad. otd., L., 1983, 83–93 | MR | Zbl