On Short Kloosterman Sums Modulo a Prime
Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 838-846

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the Karatsuba method, we obtain new estimates for Kloosterman sums modulo a prime, which, under certain constraints on the number of summands, are sharper than similar estimates found earlier.
Keywords: Kloosterman sum, Karatsuba method, inverse quantities.
@article{MZM_2016_100_6_a5,
     author = {M. A. Korolev},
     title = {On {Short} {Kloosterman} {Sums} {Modulo} a {Prime}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {838--846},
     publisher = {mathdoc},
     volume = {100},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a5/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - On Short Kloosterman Sums Modulo a Prime
JO  - Matematičeskie zametki
PY  - 2016
SP  - 838
EP  - 846
VL  - 100
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a5/
LA  - ru
ID  - MZM_2016_100_6_a5
ER  - 
%0 Journal Article
%A M. A. Korolev
%T On Short Kloosterman Sums Modulo a Prime
%J Matematičeskie zametki
%D 2016
%P 838-846
%V 100
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a5/
%G ru
%F MZM_2016_100_6_a5
M. A. Korolev. On Short Kloosterman Sums Modulo a Prime. Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 838-846. http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a5/