On the Squares in the Set of Elements of a Finite Field with Constraints on the Coefficients of Its Basis Expansion
Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 807-824.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recent results of S. Dartyge, C. Mauduit, and A. Sárközy concerning the problem of the number of squares among the elements of a finite field with constraints on the coefficients of its basis expansion are strengthened.
Keywords: missing digits, finite field, squares, character sum.
@article{MZM_2016_100_6_a3,
     author = {M. R. Gabdullin},
     title = {On the {Squares} in the {Set} of {Elements} of a {Finite} {Field} with {Constraints} on the {Coefficients} of {Its} {Basis} {Expansion}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {807--824},
     publisher = {mathdoc},
     volume = {100},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a3/}
}
TY  - JOUR
AU  - M. R. Gabdullin
TI  - On the Squares in the Set of Elements of a Finite Field with Constraints on the Coefficients of Its Basis Expansion
JO  - Matematičeskie zametki
PY  - 2016
SP  - 807
EP  - 824
VL  - 100
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a3/
LA  - ru
ID  - MZM_2016_100_6_a3
ER  - 
%0 Journal Article
%A M. R. Gabdullin
%T On the Squares in the Set of Elements of a Finite Field with Constraints on the Coefficients of Its Basis Expansion
%J Matematičeskie zametki
%D 2016
%P 807-824
%V 100
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a3/
%G ru
%F MZM_2016_100_6_a3
M. R. Gabdullin. On the Squares in the Set of Elements of a Finite Field with Constraints on the Coefficients of Its Basis Expansion. Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 807-824. http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a3/

[1] C. Dartyge, C. Mauduit, A. Sárközy, “Polynomial values and generators with missing digits in finite fields”, Funct. Approx. Comment. Math., 52:1 (2015), 65–74 | DOI | MR | Zbl

[2] C. Dartyge, A. Sárközy, “The sum of digits function in the finite field.”, Proc. Amer. Math. Soc., 141:12 (2013), 4119–4124 | DOI | MR | Zbl

[3] S. V. Konyagin, “Otsenki summ kharakterov v konechnykh polyakh”, Matem. zametki, 88:4 (2010), 529–542 | DOI | MR | Zbl

[4] R. Dietmann, C. Elsholtz, I. E. Shparlinski, Prescribing the Binary Digits of Squarefree Numbers and Quadratic Residues, arXiv: 1601.04754

[5] M. R. Gabdullin, “O kvadratakh v spetsialnykh mnozhestvakh konechnogo polya”, Chebyshevskii sb., 17:2 (2016), 56–63

[6] D. Wan, “Generators and irreducible polynomials over finite fields”, Math. Comp., 66:219 (1997), 1195–1212 | DOI | MR | Zbl

[7] A. Winterhof, “Character sums, primitive elements, and powers in finite fields”, J. Number Theory, 91:1 (2001), 153–163 | DOI | MR | Zbl

[8] J. Johnsen, “On the distribution of powers in finite fields”, J. Reine Angew. Math., 251 (1971), 10–19 | MR | Zbl

[9] S. R. Blackburn, S. V. Konyagin, I. E. Shparlinski, “Counting additive decompositions of quadratic residues in finite fields”, Funct. Approx. Comment. Math., 52:2 (2015), 223–227 | DOI | MR

[10] T. Tao, V. Vu, Additive Combinatorics, Cambridge Stud. in Adv. Math., 105, Cambridge University Press, Cambridge, 2006 | MR | Zbl

[11] U. Betke, M. Henk, J. M. Wills, “Successive-minima-type inequalities”, Discrete Comput. Geom., 9:2 (1993), 165–175 | DOI | MR | Zbl

[12] W. Banaszczyk, “Inequalities for convex bodies and polar reciprocal lattices in $\mathbb R^n$”, Discrete Comput. Geom., 13:2 (1995), 217–231 | DOI | MR | Zbl

[13] D. A. Burgess, “On character sums and primitive roots”, Proc. Lond. Math. Soc. (3), 12 (1962), 179–192 | DOI | MR | Zbl

[14] A. A. Karatsuba, “Ob otsenkakh summ kharakterov”, Izv. AN SSSR. Ser. matem., 34:1 (1970), 20–30 | MR | Zbl

[15] M.-Ch. Chang, “Burgess inequality in $\mathbb{F}_{p^2}$”, Geom. Funct. Anal., 19:4 (2009), 1001–1016 | DOI | MR | Zbl