On the Problem of Oscillation Properties of Positive Differential Operators with Singular Coefficients
Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 800-806
Voir la notice de l'article provenant de la source Math-Net.Ru
A criterion for a highly singular positive fourth-order operator with separable boundary conditions to have oscillation properties, as well as sufficient conditions for similar higher-order operators to have oscillation properties, are obtained.
Keywords:
positive self-adjoint ordinary differential operator, Sobolev space, oscillation of eigenfunctions.
@article{MZM_2016_100_6_a2,
author = {A. A. Vladimirov},
title = {On the {Problem} of {Oscillation} {Properties} of {Positive} {Differential} {Operators} with {Singular} {Coefficients}},
journal = {Matemati\v{c}eskie zametki},
pages = {800--806},
publisher = {mathdoc},
volume = {100},
number = {6},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a2/}
}
TY - JOUR AU - A. A. Vladimirov TI - On the Problem of Oscillation Properties of Positive Differential Operators with Singular Coefficients JO - Matematičeskie zametki PY - 2016 SP - 800 EP - 806 VL - 100 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a2/ LA - ru ID - MZM_2016_100_6_a2 ER -
A. A. Vladimirov. On the Problem of Oscillation Properties of Positive Differential Operators with Singular Coefficients. Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 800-806. http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a2/