On the Problem of Oscillation Properties of Positive Differential Operators with Singular Coefficients
Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 800-806.

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for a highly singular positive fourth-order operator with separable boundary conditions to have oscillation properties, as well as sufficient conditions for similar higher-order operators to have oscillation properties, are obtained.
Keywords: positive self-adjoint ordinary differential operator, Sobolev space, oscillation of eigenfunctions.
@article{MZM_2016_100_6_a2,
     author = {A. A. Vladimirov},
     title = {On the {Problem} of {Oscillation} {Properties} of {Positive} {Differential} {Operators} with {Singular} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {800--806},
     publisher = {mathdoc},
     volume = {100},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a2/}
}
TY  - JOUR
AU  - A. A. Vladimirov
TI  - On the Problem of Oscillation Properties of Positive Differential Operators with Singular Coefficients
JO  - Matematičeskie zametki
PY  - 2016
SP  - 800
EP  - 806
VL  - 100
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a2/
LA  - ru
ID  - MZM_2016_100_6_a2
ER  - 
%0 Journal Article
%A A. A. Vladimirov
%T On the Problem of Oscillation Properties of Positive Differential Operators with Singular Coefficients
%J Matematičeskie zametki
%D 2016
%P 800-806
%V 100
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a2/
%G ru
%F MZM_2016_100_6_a2
A. A. Vladimirov. On the Problem of Oscillation Properties of Positive Differential Operators with Singular Coefficients. Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 800-806. http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a2/

[1] F. R. Gantmakher, M. G. Krein, Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, M., 1950 | MR | Zbl

[2] A. A. Vladimirov, “O skhodimosti posledovatelnostei obyknovennykh differentsialnykh operatorov”, Matem. zametki, 75:6 (2004), 941–943 | DOI | MR | Zbl

[3] M. I. Neiman-zade, A. A. Shkalikov, “Operatory Shredingera s singulyarnymi potentsialami iz prostranstv multiplikatorov”, Matem. zametki, 66:5 (1999), 723–733 | DOI | MR | Zbl

[4] G. D. Stepanov, “Effektivnye kriterii znakoregulyarnosti i ostsillyatsionnosti funktsii Grina dvukhtochechnykh kraevykh zadach”, Matem. sb., 188:11 (1997), 121–159 | DOI | MR | Zbl

[5] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[6] A. A. Vladimirov, “K ostsillyatsionnoi teorii zadachi Shturma–Liuvillya s singulyarnymi koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 49:9 (2009), 1609–1621 | Zbl

[7] R. Ch. Kulaev, “Ob ostsillyatsionnosti funktsii Grina mnogotochechnoi kraevoi zadachi dlya uravneniya chetvertogo poryadka”, Differents. uravneniya, 51:4 (2015), 445–458 | DOI | Zbl

[8] R. Ch. Kulaev, “K voprosu ob ostsillyatsionnosti funktsii Grina razryvnoi kraevoi zadachi chetvertogo poryadka”, Matem. zametki, 100:3 (2016), 375–387 | DOI