Inverse Problems for First-Order Integro-Differential Operators
Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 939-946.

Voir la notice de l'article provenant de la source Math-Net.Ru

Inverse spectral problems for first-order integro-differential operators on a finite interval are studied, the properties of spectral characteristics are established, and uniqueness theorems for solutions of this class of inverse problems are proved.
Keywords: integro-differential operator, inverse spectral problem, uniqueness theorems.
@article{MZM_2016_100_6_a15,
     author = {V. A. Yurko},
     title = {Inverse {Problems} for {First-Order} {Integro-Differential} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {939--946},
     publisher = {mathdoc},
     volume = {100},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a15/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - Inverse Problems for First-Order Integro-Differential Operators
JO  - Matematičeskie zametki
PY  - 2016
SP  - 939
EP  - 946
VL  - 100
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a15/
LA  - ru
ID  - MZM_2016_100_6_a15
ER  - 
%0 Journal Article
%A V. A. Yurko
%T Inverse Problems for First-Order Integro-Differential Operators
%J Matematičeskie zametki
%D 2016
%P 939-946
%V 100
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a15/
%G ru
%F MZM_2016_100_6_a15
V. A. Yurko. Inverse Problems for First-Order Integro-Differential Operators. Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 939-946. http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a15/

[1] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR | Zbl

[2] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR | Zbl

[3] G. Freiling, V. A. Yurko, Inverse Sturm–Liouville Problems and their Applications, NOVA Sci. Publ., Huntington, NY, 2001 | MR | Zbl

[4] V. A. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, VSP, Utrecht, 2002 | MR | Zbl

[5] V. A. Yurko, Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, Moskva, 2007 | Zbl

[6] A. P. Khromov, “Konechnomernye vozmuscheniya volterrovykh operatorov”, Matem. zametki, 16:4 (1974), 669–680 | MR | Zbl

[7] A. P. Khromov, “Teoremy ravnoskhodimosti dlya integro-differentsialnykh i integralnykh operatorov”, Matem. sb., 114 (156):3 (1981), 378–405 | MR | Zbl

[8] R. Mennicken, M. Moeller, Non-Self-Adjoint Boundary Eigenvalue Problems, North-Holland Math. Stud., 192, Elsevier, Amsterdam, 2003 | Zbl

[9] V. A. Yurko, “Obratnaya zadacha dlya integralnykh operatorov”, Matem. zametki, 37:5 (1985), 690–701 | MR | Zbl

[10] V. A. Yurko, “Obratnaya zadacha dlya integro-differentsialnykh operatorov”, Matem. zametki, 50:5 (1991), 134–146 | MR | Zbl

[11] Yu. V. Kuryshova, “Obratnaya spektralnaya zadacha dlya integrodifferentsialnykh operatorov”, Matem. zametki, 81:6 (2007), 855–866 | DOI | MR | Zbl

[12] S. Buterin, “On an inverse spectral problem for a convolution integro-differential operator”, Results Math., 50:3-4 (2007), 173–181 | DOI | MR | Zbl

[13] S. A. Buterin, “O vosstanovlenii svertochnogo vozmuscheniya operatora Shturma–Liuvillya po spektru”, Differents. uravneniya, 46:1 (2010), 146–149 | MR | Zbl

[14] S. A. Buterin, “Obratnaya spektralnaya zadacha vosstanovleniya operatora svertki, vozmuschennogo odnomernym operatorom”, Matem. zametki, 80:5 (2006), 668–682 | DOI | MR | Zbl

[15] D. V. Poplavskii, “Teorema o polnote dlya singulyarnykh differentsialnykh puchkov”, Matem. zametki, 89:4 (2011), 558–576 | DOI | MR | Zbl

[16] G. Freiling, V. A. Yurko, “Inverse problems for differential operators with a constant delay”, Appl. Math. Lett., 25:11 (2012), 1999–2004 | DOI | MR | Zbl

[17] D. Arov, H. Dym, Bitangential Direct and Inverse Problems for Systems of Integral and Differential Equations, Encyclopedia of Math. Appl., 145, Cambridge Univ. Press, Cambridge, 2012 | MR | Zbl

[18] M. M. Malamud, “O nekotorykh obratnykh zadachakh”, Kraevye zadachi matematicheskoi fiziki, Kiev, Naukova dumka, 1979, 116–124

[19] L. P. Nizhnik, “Inverse spectral nonlocal problem for the first order operators”, Tamkang J. Math., 42:3 (2011), 385–394 | DOI | MR | Zbl