On Stability of Closedness and Self-Adjointness for $2\times 2$ Operator Matrices
Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 932-938
Cet article a éte moissonné depuis la source Math-Net.Ru
Consider an operator which is defined in Banach or Hilbert space $X=X_1\times X_2$ by the matrix \begin{equation*} \mathbf L = \begin{pmatrix} A & B \\ C & D \end{pmatrix}, \end{equation*} where the linear operators $A\colon X_1 \to X_1$, $B\colon X_2 \to X_1$, $C\colon X_1\to X_2$, and $D\colon X_2\to X_2$ are assumed to be unbounded. In the case when the operators $C$ and $B$ are relatively bounded with respect to the operators $A$ and $D$, respectively, new conditions of closedness or closability are obtained for the operator $\mathbf L$. For the operator $\mathbf L$ acting in a Hilbert space, analogs of Rellich–Kato theorems on the stability of self-adjointness are obtained.
Keywords:
operator matrices, perturbations of linear operators, closed operators, self-adjoint operators.
@article{MZM_2016_100_6_a14,
author = {A. A. Shkalikov and C. Trunk},
title = {On {Stability} of {Closedness} and {Self-Adjointness} for $2\times 2$ {Operator} {Matrices}},
journal = {Matemati\v{c}eskie zametki},
pages = {932--938},
year = {2016},
volume = {100},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a14/}
}
A. A. Shkalikov; C. Trunk. On Stability of Closedness and Self-Adjointness for $2\times 2$ Operator Matrices. Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 932-938. http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a14/
[1] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[2] R. Nagel, “Towards a “matrix theory” for unbounded operator matrices”, Math. Z., 201:1 (1989), 57–68 | DOI | MR | Zbl
[3] F. V. Atkinson, H. Langer, R. Menichen, A. A. Shkalikov, “The essential spectrum of some matrix operators”, Math. Nachr., 167 (1994), 5–20 | DOI | MR | Zbl
[4] C. Tretter, Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, London, 2008 | MR | Zbl
[5] S. Tretter, “Spectral inclusion for unbounded block operator matrices”, J. Funct. Anal., 256 (2009), 3806–3829 | DOI | MR | Zbl