Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_100_6_a12, author = {S. A. Sergeev and A. A. Tolchennikov}, title = {Creation {Operators} in the {Problem} of {Localized} {Solutions} of the {Linearized} {Shallow} {Water} {Equations} with {Regular} and {Singular} {Characteristics}}, journal = {Matemati\v{c}eskie zametki}, pages = {911--922}, publisher = {mathdoc}, volume = {100}, number = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a12/} }
TY - JOUR AU - S. A. Sergeev AU - A. A. Tolchennikov TI - Creation Operators in the Problem of Localized Solutions of the Linearized Shallow Water Equations with Regular and Singular Characteristics JO - Matematičeskie zametki PY - 2016 SP - 911 EP - 922 VL - 100 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a12/ LA - ru ID - MZM_2016_100_6_a12 ER -
%0 Journal Article %A S. A. Sergeev %A A. A. Tolchennikov %T Creation Operators in the Problem of Localized Solutions of the Linearized Shallow Water Equations with Regular and Singular Characteristics %J Matematičeskie zametki %D 2016 %P 911-922 %V 100 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a12/ %G ru %F MZM_2016_100_6_a12
S. A. Sergeev; A. A. Tolchennikov. Creation Operators in the Problem of Localized Solutions of the Linearized Shallow Water Equations with Regular and Singular Characteristics. Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 911-922. http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a12/
[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 3. Kvantovaya mekhanika: nerelyativistskaya teoriya, Nauka, M., 1986 | MR
[2] V. A. Fok, Nachala kvantovoi mekhaniki, Nauka, M., 1976
[3] V. E. Nazaikinskii, “Geometriya fazovogo prostranstva dlya volnovogo uravneniya, vyrozhdayuschegosya na granitse oblasti”, Matem. zametki, 92:1 (2012), 153–156 | DOI | Zbl
[4] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, “Two-dimensional wave equation with degeneration on the curvilinear boundary of the domain and asymptotic solutions with localized initial data”, Russ. J. Math. Phys, 20:4 (2013), 389–401 | DOI | MR | Zbl
[5] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Kharakteristiki s osobennostyami i granichnye znacheniya asimptoticheskogo resheniya zadachi Koshi dlya vyrozhdayuschegosya volnovogo uravneniya”, Matem. zametki (to appear)
[6] J. Pedlosky, Geophysical Fluid Dynamics, Springer, New York, 1982 | Zbl
[7] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, “Localized wave and vortical solutions to linear hyperbolic systems and their application to the linear shallow water equations”, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR | Zbl
[8] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Asimptotiki volnovykh i vikhrevykh lokalizovannykh reshenii linearizovannykh uravnenii melkoi vody”, Aktualnye problemy mekhaniki, Sbornik statei. 50 let IPMekh RAN im. A. Yu. Ishlinskogo, Nauka, M., 2015
[9] S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, “Novye formuly dlya kanonicheskogo operatora Maslova v okrestnosti fokalnykh tochek i kaustik v dvumernykh kvaziklassicheskikh asimptotikakh”, TMF, 177:3 (2013), 355–386 | DOI | Zbl
[10] S. Yu. Dobrokhotov, B. Tirozzi, C. A. Vargas, “Behavior near the focal points of asymptotic solutions to the Cauchy problem for the linearized Shallow water equations with initial localized perturbations”, Russ. J. Math. Phys., 16:2 (2009), 228–245 | DOI | MR | Zbl
[11] H. Whitney, “On singularities of mappings of Euclidean spaces. I. Mappings of the plane into the plane”, Ann. of Math. (2), 62:3 (1955), 374–410 | DOI | MR | Zbl
[12] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996 | MR
[13] S. Yu. Dobrokhotov, S. Ya. Sekerzh-Zenkovich, “Odin klass tochnykh algebraicheskikh lokalizovannykh reshenii mnogomernogo volnovogo uravneniya”, Matem. zametki, 88:6 (2010), 942–945 | DOI | MR | Zbl