The Capacity of the Rational Preimage of a Compact Set
Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 790-799.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a well-known expression for the capacity of the preimage of a compact set under a polynomial map remains valid in the case of a rational map, provided that the standard capacity of the preimage is replaced by its capacity in the external field determined by the poles in $\mathbb C$ of the rational function determining the map.
Keywords: capacity, transfinite diameter, rational map, symmetric compact set.
@article{MZM_2016_100_6_a1,
     author = {V. I. Buslaev},
     title = {The {Capacity} of the {Rational} {Preimage} of a {Compact} {Set}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {790--799},
     publisher = {mathdoc},
     volume = {100},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a1/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - The Capacity of the Rational Preimage of a Compact Set
JO  - Matematičeskie zametki
PY  - 2016
SP  - 790
EP  - 799
VL  - 100
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a1/
LA  - ru
ID  - MZM_2016_100_6_a1
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T The Capacity of the Rational Preimage of a Compact Set
%J Matematičeskie zametki
%D 2016
%P 790-799
%V 100
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a1/
%G ru
%F MZM_2016_100_6_a1
V. I. Buslaev. The Capacity of the Rational Preimage of a Compact Set. Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 790-799. http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a1/

[1] H. Stahl, “Extremal domains associated with an analytic function. I”, Complex Variables Theory Appl., 4:4 (1985), 311–324 | DOI | MR | Zbl

[2] H. Stahl, “Structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4:4 (1985), 339–354 | MR | Zbl

[3] A. A. Gonchar, E. A. Rakhmanov, “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sb., 134 (176):3 (11) (1987), 306–352 | MR | Zbl

[4] E. B. Saff, V. Totik, “Logarithmic Potentials With External Fields”, Appendix B by Thomas Bloom, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997 | MR | Zbl

[5] V. I. Buslaev, “Emkost kompakta v pole logarifmicheskogo potentsiala”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK, M., 2015, 254–271 | DOI | Zbl

[6] V. I. Buslaev, “O skhodimosti $m$-tochechnykh approksimatsii Pade nabora mnogoznachnykh analiticheskikh funktsii”, Matem. sb., 206:2 (2015), 5–30 | DOI | MR | Zbl

[7] V. I. Buslaev, “Analog teoremy Polia dlya kusochno golomorfnykh funktsii”, Matem. sb., 206:12 (2015), 55–69 | DOI | MR

[8] V. I. Buslaev, “Analog teoremy Gonchara dlya $m$-tochechnogo varianta gipotezy Leitona”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Tr. MIAN, 293, MAIK, M., 2016, 133–145 | DOI

[9] V. I. Buslaev, S. P. Suetin, “O zadachakh ravnovesiya, svyazannykh s raspredeleniem nulei polinomov Ermita–Pade”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK, M., 2015, 272–279 | DOI | MR

[10] V. I. Buslaev, S. P. Suetin, “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions”, J. Approx. Theory, 206 (2016), 48–67 | MR

[11] A. V. Komlov, S. P. Suetin, “O raspredelenii nulei polinomov Ermita–Pade”, UMN, 70:6 (426) (2015), 211–212 | DOI | MR | Zbl

[12] S. P. Suetin, “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5 (425) (2015), 121–174 | DOI | MR | Zbl