Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_100_6_a1, author = {V. I. Buslaev}, title = {The {Capacity} of the {Rational} {Preimage} of a {Compact} {Set}}, journal = {Matemati\v{c}eskie zametki}, pages = {790--799}, publisher = {mathdoc}, volume = {100}, number = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a1/} }
V. I. Buslaev. The Capacity of the Rational Preimage of a Compact Set. Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 790-799. http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a1/
[1] H. Stahl, “Extremal domains associated with an analytic function. I”, Complex Variables Theory Appl., 4:4 (1985), 311–324 | DOI | MR | Zbl
[2] H. Stahl, “Structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4:4 (1985), 339–354 | MR | Zbl
[3] A. A. Gonchar, E. A. Rakhmanov, “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sb., 134 (176):3 (11) (1987), 306–352 | MR | Zbl
[4] E. B. Saff, V. Totik, “Logarithmic Potentials With External Fields”, Appendix B by Thomas Bloom, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997 | MR | Zbl
[5] V. I. Buslaev, “Emkost kompakta v pole logarifmicheskogo potentsiala”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK, M., 2015, 254–271 | DOI | Zbl
[6] V. I. Buslaev, “O skhodimosti $m$-tochechnykh approksimatsii Pade nabora mnogoznachnykh analiticheskikh funktsii”, Matem. sb., 206:2 (2015), 5–30 | DOI | MR | Zbl
[7] V. I. Buslaev, “Analog teoremy Polia dlya kusochno golomorfnykh funktsii”, Matem. sb., 206:12 (2015), 55–69 | DOI | MR
[8] V. I. Buslaev, “Analog teoremy Gonchara dlya $m$-tochechnogo varianta gipotezy Leitona”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Tr. MIAN, 293, MAIK, M., 2016, 133–145 | DOI
[9] V. I. Buslaev, S. P. Suetin, “O zadachakh ravnovesiya, svyazannykh s raspredeleniem nulei polinomov Ermita–Pade”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK, M., 2015, 272–279 | DOI | MR
[10] V. I. Buslaev, S. P. Suetin, “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions”, J. Approx. Theory, 206 (2016), 48–67 | MR
[11] A. V. Komlov, S. P. Suetin, “O raspredelenii nulei polinomov Ermita–Pade”, UMN, 70:6 (426) (2015), 211–212 | DOI | MR | Zbl
[12] S. P. Suetin, “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5 (425) (2015), 121–174 | DOI | MR | Zbl