Characteristics with Singularities and the~Boundary Values of~the~Asymptotic Solution of~the~Cauchy Problem for~a~Degenerate Wave Equation
Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 710-731.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem with spatially localized initial data for the two-dimensional wave equation degenerating on the boundary of the domain. This problem arises, in particular, in the theory of tsunami wave run-up on a shallow beach. Earlier, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and B. Tirozzi developed a method for constructing asymptotic solutions of this problem. The method is based on a modified Maslov canonical operator and on characteristics (trajectories) unbounded in the momentum variables; such characteristics are nonstandard from the viewpoint of the theory of partial differential equations. In a neighborhood of the velocity degeneration line, which is a caustic of a special form, the canonical operator is defined via the Hankel transform, which arises when applying Fock's quantization procedure to the canonical transformation regularizing the above-mentioned nonstandard characteristics in a neighborhood of the velocity degeneration line (the boundary of the domain). It is shown in the present paper that the restriction of the asymptotic solutions to the boundary is determined by the standard canonical operator, which simplifies the asymptotic formulas for the solution on the boundary dramatically; for initial perturbations of special form, the solutions can be expressed via simple algebraic functions.
Keywords: wave equation, nonstandard characteristics, run-up on a shallow beach, localized source, asymptotics, restriction to the boundary.
@article{MZM_2016_100_5_a6,
     author = {S. Yu. Dobrokhotov and V. E. Nazaikinskii},
     title = {Characteristics with {Singularities} and {the~Boundary} {Values} {of~the~Asymptotic} {Solution} {of~the~Cauchy} {Problem} {for~a~Degenerate} {Wave} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {710--731},
     publisher = {mathdoc},
     volume = {100},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a6/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - V. E. Nazaikinskii
TI  - Characteristics with Singularities and the~Boundary Values of~the~Asymptotic Solution of~the~Cauchy Problem for~a~Degenerate Wave Equation
JO  - Matematičeskie zametki
PY  - 2016
SP  - 710
EP  - 731
VL  - 100
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a6/
LA  - ru
ID  - MZM_2016_100_5_a6
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A V. E. Nazaikinskii
%T Characteristics with Singularities and the~Boundary Values of~the~Asymptotic Solution of~the~Cauchy Problem for~a~Degenerate Wave Equation
%J Matematičeskie zametki
%D 2016
%P 710-731
%V 100
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a6/
%G ru
%F MZM_2016_100_5_a6
S. Yu. Dobrokhotov; V. E. Nazaikinskii. Characteristics with Singularities and the~Boundary Values of~the~Asymptotic Solution of~the~Cauchy Problem for~a~Degenerate Wave Equation. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 710-731. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a6/

[1] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR | Zbl

[2] M. Sh. Birman, M. Z. Solomyak, “Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve”, LGU, L., 1980 | MR

[3] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, “Asymptotic solution of the one-dimensional wave equation with localized initial data and with degenerating velocity. I”, Russ. J. Math. Phys., 17:4 (2010), 434–447 | DOI | MR | Zbl

[4] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirotstsi, “Asimptoticheskie resheniya dvumernogo modelnogo volnovogo uravneniya s vyrozhdayuscheisya skorostyu i lokalizovannymi nachalnymi dannymi”, Algebra i analiz, 22:6 (2010), 67–90 | MR | Zbl

[5] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, “Two-dimensional wave equation with degeneration on the curvilinear boundary of the domain and asymptotic solutions with localized initial data”, Russ. J. Math. Phys, 20:4 (2013), 389–401 | DOI | MR | Zbl

[6] J. J. Stoker, Water Waves. The Mathematical Theory with Applications, John Wiley Sons, New York, 1992 | MR | Zbl

[7] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF RAN, Nizhnii Novgorod, 1996

[8] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Asimptotiki volnovykh i vikhrevykh lokalizovannykh reshenii linearizovannykh uravnenii melkoi vody”, Aktualnye problemy mekhaniki, Sbornik, posvyaschennyi 50-letiyu Instituta problem mekhaniki im. A. Yu. Ishlinskogo RAN, Nauka, M., 2015, 98–139

[9] S. I. Kabanikhin, O. I. Krivorotko, “Algoritm vychisleniya amplitudy volnovykh frontov i obratnye zadachi (tsunami, elektrodinamika, akustika, vyazkouprugost)”, Dokl. RAN, 466:6 (2016), 645–649

[10] S. I. Kabanikhin, O. I. Krivorotko, “Chislennyi algoritm rascheta amplitudy volny tsunami”, Sib. zhurn. vychisl. matem., 19:2 (2016), 153–165 | DOI

[11] V. E. Nazaikinskii, “Geometriya fazovogo prostranstva dlya volnovogo uravneniya, vyrozhdayuschegosya na granitse oblasti”, Matem. zametki, 92:1 (2012), 153–156 | DOI | Zbl

[12] T. Vukašinac, P. Zhevandrov, “Geometric asymptotics for a degenerate hyperbolic equation”, Russ. J. Math. Phys., 9:3 (2002), 371–381 | MR | Zbl

[13] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965

[14] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[15] V. A. Fok, “O kanonicheskom preobrazovanii v klassicheskoi i kvantovoi mekhanike”, Vestn. Leningradsk. un-ta, 1959, no. 16, 67–70

[16] G. F. Carrier, H. P. Greenspan, “Water waves of finite amplitude on a sloping beach”, J. Fluid Mech., 4:1 (1958), 97–109 | DOI | MR | Zbl

[17] S. Yu. Dobrokhotov, B. Tirotstsi, A. I. Shafarevich, “Predstavleniya bystroubyvayuschikh funktsii kanonicheskim operatorom Maslova”, Matem. zametki, 82:5 (2007), 792–796 | DOI | MR | Zbl

[18] V. E. Nazaikinskii, “O predstavleniyakh lokalizovannykh funktsii v $\mathbb R^2$ kanonicheskim operatorom Maslova”, Matem. zametki, 96:1 (2014), 88–100 | DOI | Zbl

[19] S. Ya. Sekerzh-Zen'kovich, “Simple asymptotic solution of the Cauchy–Poisson problem for head waves”, Russ. J. Math. Phys., 16:2 (2009), 315–322 | DOI | MR | Zbl

[20] V. E. Nazaikinskii, “Kanonicheskii operator Maslova na lagranzhevykh mnogoobraziyakh v fazovom prostranstve, sootvetstvuyuschem vyrozhdayuschemusya na granitse volnovomu uravneniyu”, Matem. zametki, 96:2 (2014), 261–276 | DOI | Zbl

[21] S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, “Novye formuly dlya kanonicheskogo operatora Maslova v okrestnosti fokalnykh tochek i kaustik v dvumernykh kvaziklassicheskikh asimptotikakh”, TMF, 177:3 (2013), 355–386 | DOI | MR | Zbl

[22] V. I. Arnold, “O kharakteristicheskom klasse, vkhodyaschem v usloviya kvantovaniya”, Funkts. analiz i ego pril., 1:1 (1967), 1–14 | MR | Zbl

[23] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR | Zbl

[24] G. Beitmen, A. Erdeii, Tablitsy integralnykh preobrazovanii. T. 2. Preobrazovaniya Besselya, integraly ot spetsialnykh funktsii, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1970

[25] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR