Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_100_5_a6, author = {S. Yu. Dobrokhotov and V. E. Nazaikinskii}, title = {Characteristics with {Singularities} and {the~Boundary} {Values} {of~the~Asymptotic} {Solution} {of~the~Cauchy} {Problem} {for~a~Degenerate} {Wave} {Equation}}, journal = {Matemati\v{c}eskie zametki}, pages = {710--731}, publisher = {mathdoc}, volume = {100}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a6/} }
TY - JOUR AU - S. Yu. Dobrokhotov AU - V. E. Nazaikinskii TI - Characteristics with Singularities and the~Boundary Values of~the~Asymptotic Solution of~the~Cauchy Problem for~a~Degenerate Wave Equation JO - Matematičeskie zametki PY - 2016 SP - 710 EP - 731 VL - 100 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a6/ LA - ru ID - MZM_2016_100_5_a6 ER -
%0 Journal Article %A S. Yu. Dobrokhotov %A V. E. Nazaikinskii %T Characteristics with Singularities and the~Boundary Values of~the~Asymptotic Solution of~the~Cauchy Problem for~a~Degenerate Wave Equation %J Matematičeskie zametki %D 2016 %P 710-731 %V 100 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a6/ %G ru %F MZM_2016_100_5_a6
S. Yu. Dobrokhotov; V. E. Nazaikinskii. Characteristics with Singularities and the~Boundary Values of~the~Asymptotic Solution of~the~Cauchy Problem for~a~Degenerate Wave Equation. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 710-731. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a6/
[1] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR | Zbl
[2] M. Sh. Birman, M. Z. Solomyak, “Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve”, LGU, L., 1980 | MR
[3] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, “Asymptotic solution of the one-dimensional wave equation with localized initial data and with degenerating velocity. I”, Russ. J. Math. Phys., 17:4 (2010), 434–447 | DOI | MR | Zbl
[4] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirotstsi, “Asimptoticheskie resheniya dvumernogo modelnogo volnovogo uravneniya s vyrozhdayuscheisya skorostyu i lokalizovannymi nachalnymi dannymi”, Algebra i analiz, 22:6 (2010), 67–90 | MR | Zbl
[5] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, “Two-dimensional wave equation with degeneration on the curvilinear boundary of the domain and asymptotic solutions with localized initial data”, Russ. J. Math. Phys, 20:4 (2013), 389–401 | DOI | MR | Zbl
[6] J. J. Stoker, Water Waves. The Mathematical Theory with Applications, John Wiley Sons, New York, 1992 | MR | Zbl
[7] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF RAN, Nizhnii Novgorod, 1996
[8] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Asimptotiki volnovykh i vikhrevykh lokalizovannykh reshenii linearizovannykh uravnenii melkoi vody”, Aktualnye problemy mekhaniki, Sbornik, posvyaschennyi 50-letiyu Instituta problem mekhaniki im. A. Yu. Ishlinskogo RAN, Nauka, M., 2015, 98–139
[9] S. I. Kabanikhin, O. I. Krivorotko, “Algoritm vychisleniya amplitudy volnovykh frontov i obratnye zadachi (tsunami, elektrodinamika, akustika, vyazkouprugost)”, Dokl. RAN, 466:6 (2016), 645–649
[10] S. I. Kabanikhin, O. I. Krivorotko, “Chislennyi algoritm rascheta amplitudy volny tsunami”, Sib. zhurn. vychisl. matem., 19:2 (2016), 153–165 | DOI
[11] V. E. Nazaikinskii, “Geometriya fazovogo prostranstva dlya volnovogo uravneniya, vyrozhdayuschegosya na granitse oblasti”, Matem. zametki, 92:1 (2012), 153–156 | DOI | Zbl
[12] T. Vukašinac, P. Zhevandrov, “Geometric asymptotics for a degenerate hyperbolic equation”, Russ. J. Math. Phys., 9:3 (2002), 371–381 | MR | Zbl
[13] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965
[14] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl
[15] V. A. Fok, “O kanonicheskom preobrazovanii v klassicheskoi i kvantovoi mekhanike”, Vestn. Leningradsk. un-ta, 1959, no. 16, 67–70
[16] G. F. Carrier, H. P. Greenspan, “Water waves of finite amplitude on a sloping beach”, J. Fluid Mech., 4:1 (1958), 97–109 | DOI | MR | Zbl
[17] S. Yu. Dobrokhotov, B. Tirotstsi, A. I. Shafarevich, “Predstavleniya bystroubyvayuschikh funktsii kanonicheskim operatorom Maslova”, Matem. zametki, 82:5 (2007), 792–796 | DOI | MR | Zbl
[18] V. E. Nazaikinskii, “O predstavleniyakh lokalizovannykh funktsii v $\mathbb R^2$ kanonicheskim operatorom Maslova”, Matem. zametki, 96:1 (2014), 88–100 | DOI | Zbl
[19] S. Ya. Sekerzh-Zen'kovich, “Simple asymptotic solution of the Cauchy–Poisson problem for head waves”, Russ. J. Math. Phys., 16:2 (2009), 315–322 | DOI | MR | Zbl
[20] V. E. Nazaikinskii, “Kanonicheskii operator Maslova na lagranzhevykh mnogoobraziyakh v fazovom prostranstve, sootvetstvuyuschem vyrozhdayuschemusya na granitse volnovomu uravneniyu”, Matem. zametki, 96:2 (2014), 261–276 | DOI | Zbl
[21] S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, “Novye formuly dlya kanonicheskogo operatora Maslova v okrestnosti fokalnykh tochek i kaustik v dvumernykh kvaziklassicheskikh asimptotikakh”, TMF, 177:3 (2013), 355–386 | DOI | MR | Zbl
[22] V. I. Arnold, “O kharakteristicheskom klasse, vkhodyaschem v usloviya kvantovaniya”, Funkts. analiz i ego pril., 1:1 (1967), 1–14 | MR | Zbl
[23] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR | Zbl
[24] G. Beitmen, A. Erdeii, Tablitsy integralnykh preobrazovanii. T. 2. Preobrazovaniya Besselya, integraly ot spetsialnykh funktsii, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1970
[25] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR