Neumann Problem with the Integro-Differential Operator in the Boundary Condition
Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 701-709.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Neumann problem for a second-order parabolic equation with integro-differential operator in the boundary condition is considered. A well-posedness theorem is proved, in particular, the integral representation of the solution is obtained, estimates for the derivatives of the solution are established, and the kernel of the inverse operator of the problem is explicitly expressed.
Keywords: Neumann problem, second-order parabolic equation, integro-differential operator, Hölder space, Volterra–Fredholm integral equation of the second kind.
@article{MZM_2016_100_5_a5,
     author = {I. M. Danyliuk and A. O. Danilyuk},
     title = {Neumann {Problem} with the {Integro-Differential} {Operator} in the {Boundary} {Condition}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {701--709},
     publisher = {mathdoc},
     volume = {100},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a5/}
}
TY  - JOUR
AU  - I. M. Danyliuk
AU  - A. O. Danilyuk
TI  - Neumann Problem with the Integro-Differential Operator in the Boundary Condition
JO  - Matematičeskie zametki
PY  - 2016
SP  - 701
EP  - 709
VL  - 100
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a5/
LA  - ru
ID  - MZM_2016_100_5_a5
ER  - 
%0 Journal Article
%A I. M. Danyliuk
%A A. O. Danilyuk
%T Neumann Problem with the Integro-Differential Operator in the Boundary Condition
%J Matematičeskie zametki
%D 2016
%P 701-709
%V 100
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a5/
%G ru
%F MZM_2016_100_5_a5
I. M. Danyliuk; A. O. Danilyuk. Neumann Problem with the Integro-Differential Operator in the Boundary Condition. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 701-709. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a5/

[1] A. I. Kozhanov, “O razreshimosti kraevykh zadach s nelokalnymi i integralnymi usloviyami dlya parabolicheskikh uravnenii”, Nelin. gran. zadachi, 20 (2010), 54–76 | Zbl

[2] M. I. Matiichuk, Parabolicheskie singulyarnye kraevye zadachi, In-t matem. NAN Ukrainy, Kiev, 1999

[3] L. A. Muravei, A. V. Filinovskii, “Ob odnoi nelokalnoi kraevoi zadache dlya parabolicheskogo uravneniya”, Matem. zametki, 54:4 (1993), 98–116 | MR | Zbl

[4] N. I. Yurchuk, “Smeshannaya zadacha s integralnym usloviem dlya nekotorykh parabolicheskikh uravnenii”, Differents. uravneniya, 22:12 (1986), 2117–2126 | MR | Zbl

[5] A. O. Danilyuk, “Kraevaya zadacha dlya parabolicheskoi sistemy integro-differentsialnykh uravnenii s integralnymi usloviyami”, Ukr. matem. zhurn., 60:12 (2008), 1610–1618 | Zbl

[6] A. O. Danilyuk, M. I. Matiichuk, “Zadacha Koshi dlya parabolicheskoi sistemy integro-differentsialnykh uravnenii s operatorom tipa Fredgolma”, Nauch. vestn. Chernovitskogo nats. un-ta. Cb. nauch. tr. Matem., 2:1 (2012), 16–23

[7] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR | Zbl