Neumann Problem with the Integro-Differential Operator in the Boundary Condition
Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 701-709
Voir la notice de l'article provenant de la source Math-Net.Ru
The Neumann problem for a second-order parabolic equation with integro-differential operator in the boundary condition is considered. A well-posedness theorem is proved, in particular, the integral representation of the solution is obtained, estimates for the derivatives of the solution are established, and the kernel of the inverse operator of the problem is explicitly expressed.
Keywords:
Neumann problem, second-order parabolic equation, integro-differential operator, Hölder space, Volterra–Fredholm integral equation of the second kind.
@article{MZM_2016_100_5_a5,
author = {I. M. Danyliuk and A. O. Danilyuk},
title = {Neumann {Problem} with the {Integro-Differential} {Operator} in the {Boundary} {Condition}},
journal = {Matemati\v{c}eskie zametki},
pages = {701--709},
publisher = {mathdoc},
volume = {100},
number = {5},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a5/}
}
TY - JOUR AU - I. M. Danyliuk AU - A. O. Danilyuk TI - Neumann Problem with the Integro-Differential Operator in the Boundary Condition JO - Matematičeskie zametki PY - 2016 SP - 701 EP - 709 VL - 100 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a5/ LA - ru ID - MZM_2016_100_5_a5 ER -
I. M. Danyliuk; A. O. Danilyuk. Neumann Problem with the Integro-Differential Operator in the Boundary Condition. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 701-709. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a5/