On the Application of Linear Positive Operators for Approximation of Functions
Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 689-700
Cet article a éte moissonné depuis la source Math-Net.Ru
For the linear positive Korovkin operator $$ f(x)\to t_n(f;x)=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x+t)E(t)\,dt, $$ where $E(x)$ is the Egervary–Szász polynomial and the corresponding interpolation mean $$ t_{n,N}(f;x)=\frac{1}{N}\sum_{k=-N}^{N-1} E_n\biggl(x-\frac{\pi k}{N}\biggr)f\biggl(\frac{\pi k}{N}\biggr), $$ the Jackson-type inequalities $$ \|t_{n,N}(f;x)-f(x)\| \le (1+\pi)\omega_f\biggl(\frac1n\biggr),\qquad \|t_{n,N}(f;x)-f(x)\| \le 2\omega_f\biggl(\frac{\pi}{n+1}\biggr), $$ where $\omega_f(x)$ denotes the modulus of continuity, are proved for $N > n/2$. For $\omega_f(x) \le Mx$, the inequality $$ \|t_{n,N}(f;x)-f(x)\| \le \frac{\pi M}{n+1} \mspace{2mu}. $$ is established. As a consequence, an elementary derivation of an asymptotically sharp estimate of the Kolmogorov width of a compact set of functions satisfying the Lipschitz condition is obtained.
Keywords:
positive linear operators, Korovkin operator, trigonometric polynomial, Jackson-type inequality, functions satisfying the Lipschitz condition, Kolmogorov width.
Mots-clés : interpolation mean, Egervary–Szász polynomial
Mots-clés : interpolation mean, Egervary–Szász polynomial
@article{MZM_2016_100_5_a4,
author = {S. B. Gashkov},
title = {On the {Application} of {Linear} {Positive} {Operators} for {Approximation} of {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {689--700},
year = {2016},
volume = {100},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a4/}
}
S. B. Gashkov. On the Application of Linear Positive Operators for Approximation of Functions. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 689-700. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a4/
[1] K. Runovski, H.-J. Schmeisser, “On the convergence of Fourier means and interpolation means”, J. Comput. Anal. Appl., 6:3 (2004), 211–227 | MR | Zbl
[2] V. M. Tikhomirov, Teoriya priblizhenii, Izd-vo Mosk. un-ta, M., 1976
[3] I. K. Daugavet, Vvedenie v teoriyu priblizheniya funktsii, Izd-vo Leningr. un-ta, L., 1977 | MR | Zbl
[4] P. P. Korovkin, Lineinye operatory i teoriya priblizhenii, Fizmatlit, M., 1959 | Zbl
[5] S. B. Gashkov, “Neravenstvo Feiera–Egervari–Sassa dlya neotritsatelnykh trigonometricheskikh mnogochlenov”, Matem. prosv., ser. 3, 9, Izd-vo MTsNMO, M., 2005, 69–75