On the Application of Linear Positive Operators for Approximation of Functions
Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 689-700.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the linear positive Korovkin operator $$ f(x)\to t_n(f;x)=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x+t)E(t)\,dt, $$ where $E(x)$ is the Egervary–Szász polynomial and the corresponding interpolation mean $$ t_{n,N}(f;x)=\frac{1}{N}\sum_{k=-N}^{N-1} E_n\biggl(x-\frac{\pi k}{N}\biggr)f\biggl(\frac{\pi k}{N}\biggr), $$ the Jackson-type inequalities $$ \|t_{n,N}(f;x)-f(x)\| \le (1+\pi)\omega_f\biggl(\frac1n\biggr),\qquad \|t_{n,N}(f;x)-f(x)\| \le 2\omega_f\biggl(\frac{\pi}{n+1}\biggr), $$ where $\omega_f(x)$ denotes the modulus of continuity, are proved for $N > n/2$. For $\omega_f(x) \le Mx$, the inequality $$ \|t_{n,N}(f;x)-f(x)\| \le \frac{\pi M}{n+1} \mspace{2mu}. $$ is established. As a consequence, an elementary derivation of an asymptotically sharp estimate of the Kolmogorov width of a compact set of functions satisfying the Lipschitz condition is obtained.
Keywords: positive linear operators, Korovkin operator, trigonometric polynomial, Egervary–Szász polynomial, Jackson-type inequality, functions satisfying the Lipschitz condition, Kolmogorov width.
Mots-clés : interpolation mean
@article{MZM_2016_100_5_a4,
     author = {S. B. Gashkov},
     title = {On the {Application} of {Linear} {Positive} {Operators} for {Approximation} of {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {689--700},
     publisher = {mathdoc},
     volume = {100},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a4/}
}
TY  - JOUR
AU  - S. B. Gashkov
TI  - On the Application of Linear Positive Operators for Approximation of Functions
JO  - Matematičeskie zametki
PY  - 2016
SP  - 689
EP  - 700
VL  - 100
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a4/
LA  - ru
ID  - MZM_2016_100_5_a4
ER  - 
%0 Journal Article
%A S. B. Gashkov
%T On the Application of Linear Positive Operators for Approximation of Functions
%J Matematičeskie zametki
%D 2016
%P 689-700
%V 100
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a4/
%G ru
%F MZM_2016_100_5_a4
S. B. Gashkov. On the Application of Linear Positive Operators for Approximation of Functions. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 689-700. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a4/

[1] K. Runovski, H.-J. Schmeisser, “On the convergence of Fourier means and interpolation means”, J. Comput. Anal. Appl., 6:3 (2004), 211–227 | MR | Zbl

[2] V. M. Tikhomirov, Teoriya priblizhenii, Izd-vo Mosk. un-ta, M., 1976

[3] I. K. Daugavet, Vvedenie v teoriyu priblizheniya funktsii, Izd-vo Leningr. un-ta, L., 1977 | MR | Zbl

[4] P. P. Korovkin, Lineinye operatory i teoriya priblizhenii, Fizmatlit, M., 1959 | Zbl

[5] S. B. Gashkov, “Neravenstvo Feiera–Egervari–Sassa dlya neotritsatelnykh trigonometricheskikh mnogochlenov”, Matem. prosv., ser. 3, 9, Izd-vo MTsNMO, M., 2005, 69–75