Absolute Continuity of Distributions of Polynomials on Spaces with Log-Concave Measures
Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 672-681.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, it is proved that the distribution of a measurable polynomial on an infinite-dimensional space with log-concave measure is absolutely continuous if the polynomial is not equal to a constant almost everywhere. A similar assertion is proved for analytic functions and for some other classes of functions. Properties of distributions of norms of polynomial mappings are also studied. For the space of measurable polynomial mappings of a chosen degree, it is proved that the $L^1$-norm with respect to a log-concave measure is equivalent to the $L^1$-norm with respect to the restriction of the measure to an arbitrarily chosen set of positive measure.
Keywords: log-concave measure, measurable polynomial mapping.
Mots-clés : distribution of a polynomial
@article{MZM_2016_100_5_a2,
     author = {L. M. Arutyunyan},
     title = {Absolute {Continuity} of {Distributions} of {Polynomials} on {Spaces} with {Log-Concave} {Measures}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {672--681},
     publisher = {mathdoc},
     volume = {100},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a2/}
}
TY  - JOUR
AU  - L. M. Arutyunyan
TI  - Absolute Continuity of Distributions of Polynomials on Spaces with Log-Concave Measures
JO  - Matematičeskie zametki
PY  - 2016
SP  - 672
EP  - 681
VL  - 100
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a2/
LA  - ru
ID  - MZM_2016_100_5_a2
ER  - 
%0 Journal Article
%A L. M. Arutyunyan
%T Absolute Continuity of Distributions of Polynomials on Spaces with Log-Concave Measures
%J Matematičeskie zametki
%D 2016
%P 672-681
%V 100
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a2/
%G ru
%F MZM_2016_100_5_a2
L. M. Arutyunyan. Absolute Continuity of Distributions of Polynomials on Spaces with Log-Concave Measures. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 672-681. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a2/

[1] J. Bourgain, “On the distribution of polynomials on high dimensional convex sets”, Geometric Aspects of Functional Analysis, Lecture Notes in Math., 1469, Springer, Berlin, 1991, 127–137 | DOI | MR | Zbl

[2] F. Nazarov, M. Sodin, A. Volberg, “Geometricheskaya lemma Kannana–Lovasa–Shimonovicha, ne zavisyaschie ot razmernosti otsenki raspredeleniya znachenii polinomov i raspredelenie nulei sluchainykh analiticheskikh funktsii”, Algebra i analiz, 14:2 (2002), 214–234 | MR | Zbl

[3] S. G. Bobkov, “Nekotorye obobscheniya rezultatov Yu. V. Prokhorova o neravenstvakh tipa Khinchina dlya polinomov”, TVP, 45:4 (2000), 745–748 | DOI | MR | Zbl

[4] S. G. Bobkov, Dzh. Melburn, “Lokalizatsiya dlya beskonechnomernykh giperbolicheskikh mer”, Dokl. RAN, 462:3 (2015), 261–263 | DOI | MR | Zbl

[5] L. M. Arutyunyan, E. D. Kosov, “Otsenki integralnykh norm mnogochlenov na prostranstvakh s vypuklymi merami”, Matem. sb., 206:8 (2015), 3–22 | DOI | MR | Zbl

[6] V. I. Bogachev, Gaussian Measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[7] V. I. Bogachev, Differentiable Measures and the Malliavin Calculus, Math. Surveys Monogr., 164, Amer. Math. Soc., Providence, RI, 2010 | MR | Zbl

[8] V. I. Bogachev, “Gaussian measures on infinite-dimensional spaces”, Real and Stochastic Analysis. Current Trends, World Sci. Publ., Hackensack, NJ, 2014, 1–83 | MR | Zbl

[9] V. I. Bogachev, I. I. Malofeev, “O raspredeleniyakh gladkikh funktsii na beskonechnomernykh prostranstvakh s merami”, Dokl. RAN, 454:1 (2014), 11–14 | DOI | MR | Zbl

[10] V. E. Berezhnoi, “Ob ekvivalentnosti norm v prostranstve $\gamma$-izmerimykh mnogochlenov”, Vest. Mosk. un-ta. Ser. 1. Matem., mekh., 2004, no. 4, 54–56 | MR | Zbl

[11] V. Berezhnoy, “On the equivalence of integral norms on the space of measurable polynomials with respect to a convex measure”, Theory Stoch. Process., 14:1 (2008), 7–10 | MR | Zbl

[12] V. I. Bogachev, Measure Theory, V. 2, Springer, New York, 2007 | MR | Zbl

[13] V. I. Bogachev, O. G. Smolyanov, V. I. Sobolev, Topologicheskie vektornye prostranstva i ikh prilozheniya, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2012

[14] C. Borell, “Convex measures on locally convex spaces”, Ark. Math., 12:1 (1974), 239–252 | DOI | MR | Zbl

[15] S. Kusuoka, “On the absolute continuity of the law of a system of multiple Wiener integral”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30:1 (1983), 191–197 | MR | Zbl

[16] I. Nourdin, D. Nualart, G. Poly, “Absolute continuity and convergence of densities for random vectors on Wiener chaos”, Electron. J. Probab., 18:22 (2013), 19 pp. | MR | Zbl

[17] L. M. Arutyunyan, I. S. Yaroslavtsev, “Ob izmerimykh mnogochlenakh na beskonechnomernykh prostranstvakh”, Dokl. RAN, 446:9 (2013), 627–631 | DOI | MR | Zbl

[18] E. V. Yurova, “O nepreryvnykh suzheniyakh izmerimykh polinomialnykh otobrazhenii”, Matem. zametki, 98:6 (2015), 930–936 | DOI | MR | Zbl

[19] L. M. Arutyunyan, E. D. Kosov, I. S. Yaroslavtsev, “On convex compact sets of positive measure in linear spaces”, Math. Notes, 96:3 (2014), 448–450 | DOI | MR | Zbl