Absolute Continuity of Distributions of Polynomials on Spaces with Log-Concave Measures
Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 672-681

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, it is proved that the distribution of a measurable polynomial on an infinite-dimensional space with log-concave measure is absolutely continuous if the polynomial is not equal to a constant almost everywhere. A similar assertion is proved for analytic functions and for some other classes of functions. Properties of distributions of norms of polynomial mappings are also studied. For the space of measurable polynomial mappings of a chosen degree, it is proved that the $L^1$-norm with respect to a log-concave measure is equivalent to the $L^1$-norm with respect to the restriction of the measure to an arbitrarily chosen set of positive measure.
Keywords: log-concave measure, measurable polynomial mapping.
Mots-clés : distribution of a polynomial
@article{MZM_2016_100_5_a2,
     author = {L. M. Arutyunyan},
     title = {Absolute {Continuity} of {Distributions} of {Polynomials} on {Spaces} with {Log-Concave} {Measures}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {672--681},
     publisher = {mathdoc},
     volume = {100},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a2/}
}
TY  - JOUR
AU  - L. M. Arutyunyan
TI  - Absolute Continuity of Distributions of Polynomials on Spaces with Log-Concave Measures
JO  - Matematičeskie zametki
PY  - 2016
SP  - 672
EP  - 681
VL  - 100
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a2/
LA  - ru
ID  - MZM_2016_100_5_a2
ER  - 
%0 Journal Article
%A L. M. Arutyunyan
%T Absolute Continuity of Distributions of Polynomials on Spaces with Log-Concave Measures
%J Matematičeskie zametki
%D 2016
%P 672-681
%V 100
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a2/
%G ru
%F MZM_2016_100_5_a2
L. M. Arutyunyan. Absolute Continuity of Distributions of Polynomials on Spaces with Log-Concave Measures. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 672-681. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a2/