On the Solvability of a System of Forward-Backward Linear Equations with Unbounded Operator Coefficients
Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 762-765.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Riccati operator differential equations, system of forward (backward) equations.
@article{MZM_2016_100_5_a11,
     author = {N. V. Artamonov},
     title = {On the {Solvability} of a {System} of {Forward-Backward} {Linear} {Equations} with {Unbounded} {Operator} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {762--765},
     publisher = {mathdoc},
     volume = {100},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a11/}
}
TY  - JOUR
AU  - N. V. Artamonov
TI  - On the Solvability of a System of Forward-Backward Linear Equations with Unbounded Operator Coefficients
JO  - Matematičeskie zametki
PY  - 2016
SP  - 762
EP  - 765
VL  - 100
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a11/
LA  - ru
ID  - MZM_2016_100_5_a11
ER  - 
%0 Journal Article
%A N. V. Artamonov
%T On the Solvability of a System of Forward-Backward Linear Equations with Unbounded Operator Coefficients
%J Matematičeskie zametki
%D 2016
%P 762-765
%V 100
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a11/
%G ru
%F MZM_2016_100_5_a11
N. V. Artamonov. On the Solvability of a System of Forward-Backward Linear Equations with Unbounded Operator Coefficients. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 762-765. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a11/

[1] X. J. Li, J. M. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser Boston, Boston, 1995 | MR | Zbl

[2] D. Salamon, Trans. Amer. Math. Soc., 300:2 (1987), 383–431 | MR | Zbl

[3] J. Yong, Forward-Backward Evolution Equations and Applications, 2015, arXiv: 1508.03550

[4] A. Bensoussan, J. Frehse, P. Yam, Mean Field Games and Mean Field Type Control Theory, Springer, New York, 2013 | MR | Zbl

[5] J. Yong, X. Y. Zhou, Stochastic Controls. Hamiltonian Systems and HJB Equations, Appl. Math. (N. Y.), 43, Springer, New York, 1999 | MR | Zbl

[6] K. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., 194, Springer-Verlag, Berlin, 2000 | MR | Zbl

[7] I. Lasiecka, Analysis and Optimization of Systems. State and Frequency Domain Approaches for Infinite-Dimensional Systems, Springer-Verlag, Berlin, 1993, 23–45 | MR | Zbl

[8] I. Lasiecka, Functional Analytic Methods for Evolution Equations, Springer-Verlag, Berlin, 2004, 23–45 | MR | Zbl

[9] A. J. Pritchard, D. Salamon, SIAM J. Control Optim., 25:1 (1987), 121–144 | DOI | MR | Zbl