On a Certain Nonlinear Nonlocal Sobolev-Type Wave Equation
Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 656-671.

Voir la notice de l'article provenant de la source Math-Net.Ru

The initial boundary-value problem for the nonlinear nonlocal Sobolev equation is studied. Sufficient conditions for local and for global (with respect to time) solvability are obtained. For the case of local (not global) solvability, upper and lower bounds for the lifespan of the solution are obtained in the form of explicit and implicit formulas.
Keywords: nonlinear Sobolev-type equation, blow-up of solutions.
@article{MZM_2016_100_5_a1,
     author = {A. I. Aristov},
     title = {On a {Certain} {Nonlinear} {Nonlocal} {Sobolev-Type} {Wave} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {656--671},
     publisher = {mathdoc},
     volume = {100},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a1/}
}
TY  - JOUR
AU  - A. I. Aristov
TI  - On a Certain Nonlinear Nonlocal Sobolev-Type Wave Equation
JO  - Matematičeskie zametki
PY  - 2016
SP  - 656
EP  - 671
VL  - 100
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a1/
LA  - ru
ID  - MZM_2016_100_5_a1
ER  - 
%0 Journal Article
%A A. I. Aristov
%T On a Certain Nonlinear Nonlocal Sobolev-Type Wave Equation
%J Matematičeskie zametki
%D 2016
%P 656-671
%V 100
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a1/
%G ru
%F MZM_2016_100_5_a1
A. I. Aristov. On a Certain Nonlinear Nonlocal Sobolev-Type Wave Equation. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 656-671. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a1/

[1] M. O. Korpusov, Razrushenie v neklassicheskikh nelokalnykh uravneniyakh, URSS, M., 2010

[2] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl

[3] A. I. Aristov, “O nachalno-kraevoi zadache dlya odnogo nelineinogo uravneniya sobolevskogo tipa, soderzhaschego peremennyi koeffitsient”, Matem. zametki, 91:5 (2012), 643–653 | DOI | Zbl

[4] A. I. Aristov, Issledovanie kachestvennykh svoistv reshenii nekotorykh nelineinykh uravnenii sobolevskogo tipa, Dis. $\dots$ kand. fiz.-matem. nauk, Izd-vo Mosk. un-ta, M., 2014

[5] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Nelineinyi funktsionalnyi analiz i ego prilozheniya k uravneniyam v chastnykh proizvodnykh, Nauchnyi mir, M., 2008

[6] A. I. Aristov, “Otsenki vremeni suschestvovaniya reshenii nachalno-kraevoi zadachi dlya odnogo nelineinogo sobolevskogo uravneniyas peremennym koeffitsientom”, Differents. uravneniya, 48:6 (2012), 781–789 | Zbl