Positive Radially Symmetric Solution of the Dirichlet Problem for a Nonlinear Elliptic System with $p$-Laplacian
Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 643-655.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the existence and uniqueness of a positive radially symmetric solution of the Dirichlet problem for a nonlinear elliptic second-order system with $p$-Laplacian are obtained. In addition, it also proved that these conditions guarantee the nonexistence of a global positive radially symmetric solution.
Keywords: Dirichlet problem, nonlinear differential equation, $p$-Laplacian
Mots-clés : positive solution.
@article{MZM_2016_100_5_a0,
     author = {E. I. Abduragimov},
     title = {Positive {Radially} {Symmetric} {Solution} of the {Dirichlet} {Problem} for a {Nonlinear} {Elliptic} {System} with $p${-Laplacian}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--655},
     publisher = {mathdoc},
     volume = {100},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a0/}
}
TY  - JOUR
AU  - E. I. Abduragimov
TI  - Positive Radially Symmetric Solution of the Dirichlet Problem for a Nonlinear Elliptic System with $p$-Laplacian
JO  - Matematičeskie zametki
PY  - 2016
SP  - 643
EP  - 655
VL  - 100
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a0/
LA  - ru
ID  - MZM_2016_100_5_a0
ER  - 
%0 Journal Article
%A E. I. Abduragimov
%T Positive Radially Symmetric Solution of the Dirichlet Problem for a Nonlinear Elliptic System with $p$-Laplacian
%J Matematičeskie zametki
%D 2016
%P 643-655
%V 100
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a0/
%G ru
%F MZM_2016_100_5_a0
E. I. Abduragimov. Positive Radially Symmetric Solution of the Dirichlet Problem for a Nonlinear Elliptic System with $p$-Laplacian. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 643-655. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a0/

[1] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 3–383 | MR | Zbl

[2] S. I. Pokhozhaev, “Ob odnoi zadache L. V. Ovsyannikova”, Zhurn. prikl. mekhaniki i tekhn. fiziki, 1989, no. 2, 5–10 | MR

[3] E. I. Galakhov, “Polozhitelnye resheniya kvazilineinogo ellipticheskogo uravneniya”, Matem. zametki, 78:2 (2005), 202–211 | DOI | MR | Zbl

[4] K. S. Cheng, J.-Ts. Lin, “On the elliptic equations $\delta u=K(x)u^{\alpha}$ and $\delta u=K(x)e^{2u}$”, Trans. Amer. Math. Soc., 304:2 (1987), 639–668 | MR | Zbl

[5] B. Gidas, J. Spruck, “Global and local behavior of positive solutions of nonlinear elliptic equations”, Comm. Pure Appl. Math, 1981, no. 34, 525–598 | DOI | MR | Zbl

[6] H. Zou, “Existence and non-existence for strongly coupled quasi-linear cooperative elliptic systems”, J. Math. Soc. Japan, 59:2 (2007), 393–421 | DOI | MR | Zbl

[7] Kh. Zou, “Apriornye otsenki, suschestvovanie i nesuschestvovanie dlya kooperativnykh kvazilineinykh ellipticheskikh sistem”, Matem. sb., 199:4 (2008), 83–106 | DOI | MR | Zbl

[8] E. N. Dancer, J. Shi, “Uniqueness and nonexistence of positive solutions to semipositive problems”, Bull. London Math. Soc., 38:6 (2006), 1033–1044 | MR | Zbl

[9] J. Jiang, “On radially symmetric solutions to singular nonlinear Dirichlet problems”, Nonlinear Anal., Theory Methods Appl., 24:2 (1995), 159–163 | DOI | MR | Zbl

[10] E. I. Abduragimov, “O edinstvennosti polozhitelnogo radialno-simmetrichnogo resheniya v share zadachi Dirikhle dlya odnogo nelineinogo differentsialnogo uravneniya vtorogo poryadka”, Izv. vuzov. Matem., 2008, no. 12, 3–6 | MR | Zbl

[11] E. I. Abduragimov, “Edinstvennost polozhitelnogo resheniya zadachi Dirikhle v share dlya kvazilineinogo uravneniya s $p$-laplasianom”, Izv. vuzov. Matem., 2011, no. 10, 3–11 | MR

[12] E. I. Abduragimov, “Edinstvennost polozhitelnogo radialno-simmetrichnogo resheniya zadachi Dirikhle dlya odnoi nelineinoi ellipticheskoi sistemy vtorogo poryadka”, Matem. zametki, 93:1 (2013), 3–12 | DOI | MR | Zbl

[13] Ts. Na, Vychislitelnye metody resheniya prikladnykh granichnykh zadach, Mir, M., 1982 | MR