Positive Radially Symmetric Solution of the Dirichlet Problem for a Nonlinear Elliptic System with $p$-Laplacian
Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 643-655

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the existence and uniqueness of a positive radially symmetric solution of the Dirichlet problem for a nonlinear elliptic second-order system with $p$-Laplacian are obtained. In addition, it also proved that these conditions guarantee the nonexistence of a global positive radially symmetric solution.
Keywords: Dirichlet problem, nonlinear differential equation, $p$-Laplacian
Mots-clés : positive solution.
@article{MZM_2016_100_5_a0,
     author = {E. I. Abduragimov},
     title = {Positive {Radially} {Symmetric} {Solution} of the {Dirichlet} {Problem} for a {Nonlinear} {Elliptic} {System} with $p${-Laplacian}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--655},
     publisher = {mathdoc},
     volume = {100},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a0/}
}
TY  - JOUR
AU  - E. I. Abduragimov
TI  - Positive Radially Symmetric Solution of the Dirichlet Problem for a Nonlinear Elliptic System with $p$-Laplacian
JO  - Matematičeskie zametki
PY  - 2016
SP  - 643
EP  - 655
VL  - 100
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a0/
LA  - ru
ID  - MZM_2016_100_5_a0
ER  - 
%0 Journal Article
%A E. I. Abduragimov
%T Positive Radially Symmetric Solution of the Dirichlet Problem for a Nonlinear Elliptic System with $p$-Laplacian
%J Matematičeskie zametki
%D 2016
%P 643-655
%V 100
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a0/
%G ru
%F MZM_2016_100_5_a0
E. I. Abduragimov. Positive Radially Symmetric Solution of the Dirichlet Problem for a Nonlinear Elliptic System with $p$-Laplacian. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 643-655. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a0/