Simple Finite-Dimensional Right Alternative Superalgebras with Unitary Even Part over a Field of Characteristic~$0$
Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 577-585.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algebra obtained by the external adjoining a unit to a nilalgebra is said to be unitary. It is proved that every simple finite-dimensional right alternative superalgebra with unitary even part over a field of characteristic $0$ is associative.
Keywords: simple superalgebra, simple finite-dimensional right alternative superalgebra, unital superalgebra, radical.
@article{MZM_2016_100_4_a9,
     author = {S. V. Pchelintsev and O. V. Shashkov},
     title = {Simple {Finite-Dimensional} {Right} {Alternative} {Superalgebras} with {Unitary} {Even} {Part} over a {Field} of {Characteristic~}$0$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {577--585},
     publisher = {mathdoc},
     volume = {100},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a9/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
AU  - O. V. Shashkov
TI  - Simple Finite-Dimensional Right Alternative Superalgebras with Unitary Even Part over a Field of Characteristic~$0$
JO  - Matematičeskie zametki
PY  - 2016
SP  - 577
EP  - 585
VL  - 100
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a9/
LA  - ru
ID  - MZM_2016_100_4_a9
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%A O. V. Shashkov
%T Simple Finite-Dimensional Right Alternative Superalgebras with Unitary Even Part over a Field of Characteristic~$0$
%J Matematičeskie zametki
%D 2016
%P 577-585
%V 100
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a9/
%G ru
%F MZM_2016_100_4_a9
S. V. Pchelintsev; O. V. Shashkov. Simple Finite-Dimensional Right Alternative Superalgebras with Unitary Even Part over a Field of Characteristic~$0$. Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 577-585. http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a9/

[1] I. P. Shestakov, “Pervichnye alternativnye superalgebry proizvolnoi kharakteristiki”, Algebra i logika, 36:6 (1997), 675–716 | MR | Zbl

[2] I. P. Shestakov, “Prostye $(-1,1)$-superalgebry”, Algebra i logika, 37:6 (1998), 721–739 | MR | Zbl

[3] Dnestrovskaya tetrad. Nereshennye problemy teorii kolets i modulei, Izd. chetvertoe, IM SO RAN, Novosibirsk, 1993 | MR

[4] S. V. Pchelintsev, O. V. Shashkov, “Prostye konechnomernye pravoalternativnye superalgebry abeleva tipa kharakteristiki nul”, Izv. RAN. Ser. matem., 79:3 (2015), 131–158 | DOI | MR | Zbl

[5] J. P. Silva, L. S. I. Murakami, I. P. Shestakov, “On right alternative syperalgebras”, Comm. Algebra (to appear)

[6] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR | Zbl

[7] E. Kleinfeld, “Right alternative rings”, Proc. Amer. Math. Soc., 4 (1953), 939–944 | DOI | MR | Zbl

[8] T. Anderson, “Hereditary radicals and derivations of algebras”, Canad. J. Math., 21 (1969), 372–377 | DOI | MR | Zbl