Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_100_4_a7, author = {V. P. Maslov}, title = {Analytic {Number} {Theory} and {Disinformation}}, journal = {Matemati\v{c}eskie zametki}, pages = {553--565}, publisher = {mathdoc}, volume = {100}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a7/} }
V. P. Maslov. Analytic Number Theory and Disinformation. Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 553-565. http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a7/
[1] A. G. Postnikov, Vvedenie v analiticheskuyu teoriyu chisel, Nauka, M., 1971 | MR | Zbl
[2] B. M. Bredikhin, “Elementarnoe reshenie obratnykh zadach o bazisakh svobodnykh polugrupp”, Matem. sb., 50 (92):2 (1960), 221–232 | MR | Zbl
[3] V. P. Maslov, V. E. Nazaikinskii, “Disinformation theory for bosonic computational media”, Math. Notes, 99:6 (2016), 895–900 | DOI
[4] V. P. Maslov, “Mathematical justification for the transition to negative pressures of the new ideal liquid”, Math. Notes, 92:3 (2012), 402–411 | DOI | Zbl
[5] V. P. Maslov, “Case of less than two degrees of freedom, negative pressure, and the Fermi–Dirac distribution for a hard liquid”, Math. Notes, 98:1 (2015), 138–157 | DOI | MR | Zbl
[6] J. Knopfmacher, Abstract Analytic Number Theory, North-Holland Math. Library, 12, North-Holland Publ., Amsterdam, 1975 | MR | Zbl
[7] V. P. Maslov, V. E. Nazaikinskii, “On the rate of Convergence to the Bose–Einstein distribution”, Math. Notes, 99:1 (2016), 95–109 | DOI | MR | Zbl
[8] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika, Fizmatlit, M., 2003
[9] V. P. Maslov, “New approach to classical thermodynamics”, Math. Notes, 100:1 (2016), 154–185 | DOI
[10] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, URSS, M., 1983 | MR
[11] V. P. Maslov, “Case of less than two degrees of freedom, negative pressure, and the Fermi–Dirac distribution for a hard liquid”, Math. Notes, 98:1 (2015), 138–157 | DOI | MR | Zbl
[12] V. P. Maslov, V. E. Nazaikinskii, “Conjugate variables in analytic number theory. Phase space and Lagrangian manifolds”, Math. Notes, 100:3 (2016)