On the Convexity of Images of Nonlinear Integral Operators
Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 544-552.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study continuous nonlinear Urysohn-type integral operators acting from the spaces of vector functions with integrable components to the space of continuous functions. We obtain conditions under which the images of sets defined by pointwise constraints have a convex closure under the action of these operators. The result is used to justify a method of constructive approximation of these images and to derive a necessary solvability condition for Urysohn-type integral equations. A numerical method for finding the residual of equations of this type on the sets under consideration is justified.
Keywords: nonlinear integral operator, multivalued mapping, image of a set, closure, convexity, quasisolution.
@article{MZM_2016_100_4_a6,
     author = {M. Yu. Kokurin},
     title = {On the {Convexity} of {Images} of {Nonlinear} {Integral} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {544--552},
     publisher = {mathdoc},
     volume = {100},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a6/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - On the Convexity of Images of Nonlinear Integral Operators
JO  - Matematičeskie zametki
PY  - 2016
SP  - 544
EP  - 552
VL  - 100
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a6/
LA  - ru
ID  - MZM_2016_100_4_a6
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T On the Convexity of Images of Nonlinear Integral Operators
%J Matematičeskie zametki
%D 2016
%P 544-552
%V 100
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a6/
%G ru
%F MZM_2016_100_4_a6
M. Yu. Kokurin. On the Convexity of Images of Nonlinear Integral Operators. Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 544-552. http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a6/

[1] V. I. Bogachev, O. G. Smolyanov, Deistvitelnyi i funktsionalnyi analiz: universitetskii kurs, NITs RKhD, M.–Izhevsk, 2011

[2] J.-P. Aubin, H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990 | MR | Zbl

[3] M. Yu. Kokurin, “Svoistva vypuklosti obrazov nelineinykh integralnykh operatorov”, Matem. sb., 205:12 (2014), 99–110 | DOI | Zbl

[4] P. P. Zabreiko, A. I. Koshelev, M. A. Krasnoselskii i dr., Integralnye uravneniya, Nauka, M., 1968 | MR

[5] M. Otelbaev, G. A. Suvorchenkova, “Neobkhodimoe i dostatochnoe uslovie ogranichennosti i nepreryvnosti odnogo klassa operatorov Urysona”, Sib. matem. zhurn., 20:1 (1979), 428–432 | MR | Zbl

[6] I. V. Misyurkeev, Yu. V. Nepomnyaschikh, “Kriterii polnoi nepreryvnosti operatora Urysona”, Izv. vuzov. Matem., 4 (1991), 32–43 | Zbl

[7] F. Hiai, H. Umegaki, “Integrals, conditional expectations, and martingales of multivalued functions”, J. Multivariate Anal., 7:1 (1977), 149–182 | DOI | MR | Zbl

[8] Dzh. Varga, Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[9] Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, V. 1, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl

[10] D. Distel, Geometriya banakhovykh prostranstv. Izbrannye glavy, Vischa shkola, Kiev, 1980 | MR

[11] D. B. Yudin, Zadachi i metody stokhasticheskogo programmirovaniya, Sovetskoe radio, M., 1979 | Zbl

[12] A. N. Tikhonov, A. S. Leonov, A. G. Yagola, Nelineinye nekorrektnye zadachi, Nauka, M., 1995 | MR

[13] A. B. Bakushinskii, M. Yu. Kokurin, Algoritmicheskii analiz neregulyarnykh operatornykh uravnenii, LENAND, M., 2012

[14] F. P. Vasilev, Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR