Lyapunov Direct Method for Semidynamical Systems
Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 531-543.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stability of closed invariant sets of semidynamical systems defined on an arbitrary metric space is analyzed. The main theorems of Lyapunov's second method for the uniform stability and uniform asymptotic stability (local and global) are stated. Illustrative examples are given.
Keywords: semidynamical system, Lyapunov function, stability.
Mots-clés : invariant set
@article{MZM_2016_100_4_a5,
     author = {B. S. Kalitin},
     title = {Lyapunov {Direct} {Method} for {Semidynamical} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {531--543},
     publisher = {mathdoc},
     volume = {100},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a5/}
}
TY  - JOUR
AU  - B. S. Kalitin
TI  - Lyapunov Direct Method for Semidynamical Systems
JO  - Matematičeskie zametki
PY  - 2016
SP  - 531
EP  - 543
VL  - 100
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a5/
LA  - ru
ID  - MZM_2016_100_4_a5
ER  - 
%0 Journal Article
%A B. S. Kalitin
%T Lyapunov Direct Method for Semidynamical Systems
%J Matematičeskie zametki
%D 2016
%P 531-543
%V 100
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a5/
%G ru
%F MZM_2016_100_4_a5
B. S. Kalitin. Lyapunov Direct Method for Semidynamical Systems. Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 531-543. http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a5/

[1] A. M. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, Sobr. soch. T. 2, Izd-vo AN SSSR, M., 1956

[2] E. A. Barbashin, N. N. Krasovskii, “Ob ustoichivosti dvizheniya v tselom”, DAN SSSR, 86 (1952), 453–456 | Zbl

[3] N. N. Krasovskii, Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatlit, M., 1959 | MR

[4] J. P. La Salle, “Some extentions of Liapunov`s second method”, IRE Trans. Circuit. Theory CT, 7 (1960), 520–527 | DOI | MR

[5] V. M. Matrosov, “Ob ustoichivosti dvizheniya”, Prikladnaya matematika i mekhanika, 26:5 (1962), 885–895 | Zbl

[6] Metod vektornykh funktsii Lyapunova v teorii ustoichivosti, eds. A. A. Voronov, V. M. Matrosov, M., Nauka, 1987 | MR

[7] S. N. Vasilev, Metod vektornykh funktsii Lyapunova v zadachakh mnogokriterialnogo vybora, Nauka, Novosibirsk, 1984

[8] V. I. Zubov, Ustoichivost dvizheniya (metody Lyapunova i ikh primenenie), Vysshaya shkola, M., 1984 | MR

[9] N. P. Bhatia, G. Szegö, Stability Theory of Dynamical Systems, Springer, Berlin, 1970 | MR | Zbl

[10] S. N. Saperstone, Semidynamical Systems in Infinite Dimensional Space, Springer, Berlin, 1981 | MR

[11] B. S. Kalitine, “Sur la stabilité des ensembles compacts positivement invariants des systèmes dynamiques”, R.A.I.R.O. Automatique/Systems Analisys and Control, 16:3 (1982), 275–286 | MR | Zbl

[12] B. S. Kalitine, “Sur le théorème de la stabilité non asymptotique dans la méthode directe de Lyapunov”, Comptes Rendus Acad. Sci. Paris. Ser. 1. Math., 338 (2004), 163–166 | DOI | MR | Zbl

[13] B. S. Kalitin, “Ustoichivost zamknutykh invariantnykh mnozhestv poludinamicheskikh sistem. Metod znakopostoyannykh funktsii Lyapunova”, Differents. uravneniya, 38:11 (2002), 1565–1566 | MR | Zbl

[14] J.-C. Vivalda, B. S. Kalitine, “La-Sall's invariance principle and method of semi definite functions”, Vestn. Belorus. gos. un-ta. Ser. 1. Fiz., matem., inform., 2006, no. 1, 62–67 | MR

[15] B. S. Kalitin, “Neustoichivost zamknutykh invariantnykh mnozhestv poludinamicheskikh sistem. Metod znakopostoyannykh funktsii Lyapunova”, Matem. zametki, 85:3 (2009), 382–394 | DOI | MR | Zbl

[16] P. Seibert, “On stability relative a set and to the whole space”, Papers Presented at the V International Conference on Nonlinear Oscillations, Izdat. Ins. Mat. Akad. Nauk USSR, Kiev, 1969, 448–457

[17] P. Seibert, “Relative stability and stability of closed sets”, Sem. Diff. Eqs. Dyn. Systs. II.,, Lectur Notes in Math., 144, Springer-Verlag, Berlin, 1970, 185–189 | DOI | MR | Zbl

[18] P. Seibert, J. S. Florio, “On the reduction to a subspace of stability properties of systems in metric space”, Ann. Mat. Pura Appl., 169:3 (1995), 291–320 | DOI | MR | Zbl

[19] P. Seibert, “Reduction theorems for stability of systems in general space”, Nonlinear Anal. Theory Methods, 30:7 (1997), 4675–4681 | DOI | MR | Zbl

[20] J. H. Arredondo, P. Seibert, “On a characterization of asymptotic stability”, Aportaciones Matematicas. Serie Comunicationes, 29 (2001), 11–16 | MR | Zbl

[21] O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge Univ. Press, Cambridge, 1991 | MR