Approximation in~$L_2$ by Partial Integrals of the Fourier Transform over the Eigenfunctions of the Sturm--Liouville Operator
Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 519-530.

Voir la notice de l'article provenant de la source Math-Net.Ru

For approximations in the space $L_2(\mathbb{R}_+)$ by partial integrals of the Fourier transform over the eigenfunctions of the Sturm–Liouville operator, we prove Jackson's inequality with exact constant and optimal argument in the modulus of continuity. The optimality of the argument in the modulus of continuity is established using the Gauss quadrature formula on the half-line over the zeros of the eigenfunction of the Sturm–Liouville operator.
Keywords: Sturm–Liouville operator on the half-line, the space $L_2$, Jackson's inequality
Mots-clés : Fourier transform, Gauss quadrature formula.
@article{MZM_2016_100_4_a4,
     author = {D. V. Gorbachev and V. I. Ivanov},
     title = {Approximation in~$L_2$ by {Partial} {Integrals} of the {Fourier} {Transform} over the {Eigenfunctions} of the {Sturm--Liouville} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {519--530},
     publisher = {mathdoc},
     volume = {100},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a4/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - V. I. Ivanov
TI  - Approximation in~$L_2$ by Partial Integrals of the Fourier Transform over the Eigenfunctions of the Sturm--Liouville Operator
JO  - Matematičeskie zametki
PY  - 2016
SP  - 519
EP  - 530
VL  - 100
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a4/
LA  - ru
ID  - MZM_2016_100_4_a4
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A V. I. Ivanov
%T Approximation in~$L_2$ by Partial Integrals of the Fourier Transform over the Eigenfunctions of the Sturm--Liouville Operator
%J Matematičeskie zametki
%D 2016
%P 519-530
%V 100
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a4/
%G ru
%F MZM_2016_100_4_a4
D. V. Gorbachev; V. I. Ivanov. Approximation in~$L_2$ by Partial Integrals of the Fourier Transform over the Eigenfunctions of the Sturm--Liouville Operator. Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 519-530. http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a4/

[1] A. G. Babenko, “Tochnoe neravenstvo Dzheksona–Stechkina v prostranstve $L^2(\mathbb R^m)$”, Sbornik nauchnykh trudov, Tr. IMM UrO RAN, 5, 1998, 183–198 | Zbl

[2] A. V. Moskovskii, “Teoremy Dzheksona v prostranstvakh $L_p(\mathbb{R}^n)$ i $L_{p,\lambda}(\mathbb{R}_+)$”, Izv. TulGU. Ser. Matem. Mekh. Inform., 3:1 (1997), 44–70 | MR

[3] D. V. Gorbachev, “Ekstremalnye zadachi dlya tselykh funktsii eksponentsialnogo sfericheskogo tipa”, Matem. zametki, 68:2 (2000), 179–187 | DOI | Zbl

[4] C. Frappier, P. Oliver, “A quadrature formula involving zeros of Bessel functions”, Math. Comp., 60:201 (1993), 303–316 | DOI | MR | Zbl

[5] G. R. Grozev, Q. I. Rahman, “A quadrature formula with zeros of Bessel functions as nodes”, Math. Comp., 64 (1995), 715–725 | DOI | MR | Zbl

[6] V. V. Arestov, N. I. Chernykh, “On the $L_2$-approximation of periodic functions by trigonometric polynomials”, Approximation and Functions Spaces, North-Holland, Amsterdam, 1981, 25–43 | MR | Zbl

[7] E. E. Berdysheva, “Dve vzaimosvyazannye ekstremalnye zadachi dlya tselykh funktsii mnogikh peremennykh”, Matem. zametki, 66:3 (1999), 336–350 | DOI | Zbl

[8] A. V. Ivanov, “Nekotorye ekstremalnye zadachi dlya tselykh funktsii v vesovykh prostranstvakh”, Izv. TulGU. Estestvennye nauki, 2010, no. 1, 26–44

[9] A. V. Ivanov, “Zadacha Logana dlya tselykh funktsii mnogikh peremennykh i konstanty Dzheksona v vesovykh prostranstvakh”, Izv. TulGU. Estestvennye nauki, 2011, no. 2, 29–58

[10] A. V. Ivanov, V. I. Ivanov, “Optimalnye argumenty v neravenstve Dzheksona v prostranstve $L_2(\mathbb{R}^d)$ so stepennym vesom”, Matem. zametki, 94:3 (2013), 338–348 | DOI | Zbl

[11] V. I. Ivanov, A. V. Ivanov, “Optimalnye argumenty v neravenstve Dzheksona–Stechkina v $L_2(\mathbb{R}^d)$ s vesom Danklya”, Matem. zametki, 96:5 (2014), 674–686 | DOI | MR | Zbl

[12] D. V. Gorbachev, V. I. Ivanov, R. A. Veprintsev, “Optimal argument in the sharp Jackson inequality in the space $L_2$ with hyperbolic weight”, Math. Notes, 96:6 (2014), 904–913 | DOI | MR | Zbl

[13] R. A. Veprintsev, “Priblizhenie v $L_2$ chastichnymi integralami mnogomernogo preobrazovaniya Yakobi”, Matem. zametki, 97:6 (2015), 815–831 | DOI | MR | Zbl

[14] D. V. Gorbachev, V. I. Ivanov, “Kvadraturnye formuly Gaussa i Markova po nulyam sobstvennykh funktsii zadachi Shturma–Liuvillya, tochnye dlya tselykh funktsii eksponentsialnogo tipa”, Matem. sb., 206:8 (2015), 63–98 | DOI | MR | Zbl

[15] B. M. Levitan, Teoriya operatorov obobschennogo sdviga, Nauka, M., 1973 | MR

[16] B. M. Levitan, I. S. Sargsyan, Vvedenie v spektralnuyu teoriyu, Nauka, M., 1970 | MR

[17] B. M. Levitan, I. S. Sargsyan, Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR

[18] M. Flensted-Jensen, T. H. Koornwinder, “Jacobi functions. The addition formula and the positivity of dual convolution structure”, Ark. Mat., 17 (1979), 139–151 | DOI | MR | Zbl

[19] N. P. Korneichuk, Ekstremalnye zadachi teorii priblizhenii, Nauka, M., 1976

[20] V. V. Arestov, V. Yu. Popov, “Neravenstvo Dzheksona na sfere v $L_2$”, Izv. vuzov. Matem., 1995, no. 8, 13–20 | MR | Zbl

[21] B. F. Logan, “Extremal problems for positive-definite bandlimited functions I. Eventually positive functions with zero integral”, SIAM J. Math. Anal., 14:2 (1983), 249–252 | DOI | MR | Zbl

[22] V. A. Yudin, “Mnogomernaya teorema Dzheksona v $L_2$”, Matem. zametki, 29:2 (1981), 309–315 | MR | Zbl

[23] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956