Immersion of K\"ahler Manifolds in the Class of Convex Submanifolds
Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 504-509.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a real complete convex Kähler submanifold in Euclidean space splits as a metric product of two-dimensional surfaces of positive Gaussian curvature in Euclidean 3-space and a Euclidean subspace. A theorem of V. K. Beloshapka and S. N. Bychkov is generalized to the case of convex submanifolds of any codimension.
Keywords: Kähler manifold, convex submanifold, extrinsic null-index, pluriharmonicity index.
@article{MZM_2016_100_4_a2,
     author = {A. A. Borisenko},
     title = {Immersion of {K\"ahler} {Manifolds} in the {Class} of {Convex} {Submanifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {504--509},
     publisher = {mathdoc},
     volume = {100},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a2/}
}
TY  - JOUR
AU  - A. A. Borisenko
TI  - Immersion of K\"ahler Manifolds in the Class of Convex Submanifolds
JO  - Matematičeskie zametki
PY  - 2016
SP  - 504
EP  - 509
VL  - 100
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a2/
LA  - ru
ID  - MZM_2016_100_4_a2
ER  - 
%0 Journal Article
%A A. A. Borisenko
%T Immersion of K\"ahler Manifolds in the Class of Convex Submanifolds
%J Matematičeskie zametki
%D 2016
%P 504-509
%V 100
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a2/
%G ru
%F MZM_2016_100_4_a2
A. A. Borisenko. Immersion of K\"ahler Manifolds in the Class of Convex Submanifolds. Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 504-509. http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a2/

[1] L. A. Florit, W. S. Hui, F. Zheng, “On real Kahler Euclidean submanifolds with non-negative Ricci curvature”, J. Eur. Math. Soc. (JEMS), 7 (2005), 1–11 | DOI | MR | Zbl

[2] L. A. Florit, F. Zheng, “A local and global splitting result for real Kahler Euclidean submanifolds”, Arch. Math. (Basel), 84 (2005), 88–95 | DOI | MR | Zbl

[3] M. Dajczer,L. Rodrigues, “Rigidity of real Kahler submanifolds”, Duke Math. J., 53 (1986), 211–220 | DOI | MR

[4] A. A. Borisenko, “Vneshnyaya geometriya silno parabolicheskikh mnogomernykh podmnogoobrazii”, UMN, 52:6 (318) (1997), 3–52 | DOI | Zbl

[5] A. A. Borisenko, Vnutrennyaya i vneshnyaya geometriya mnogomernykh podmnogoobrazii, Ekzamen, M., 2003

[6] A. A. Borisenko, “O stroenii $l$-mernykh poverkhnostei s vyrozhdennoi vtoroi kvadratichnoi formoi v $n$-mernom evklidovom prostranstve”, Ukr. geom. sb., 13, Kharkov, 1973, 18–27 | Zbl

[7] A. A. Borisenko, “Vneshnyaya geometriya parabolicheskikh i sedlovykh mnogomernykh podmnogoobrazii”, UMN, 53:6 (324) (1998), 3–52 | DOI | Zbl

[8] V. K. Beloshapka, S. N. Bychkov, “Ob odnom svoistve vypuklykh giperpoverkhnostei v $\mathbf C^n$”, Matem. zametki, 40:5 (1986), 621–626 | MR | Zbl