On a Set Everywhere Dense in a Lebesgue Space on the Real Line
Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 633-635.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: everywhere dense set
Mots-clés : Lebesgue space.
@article{MZM_2016_100_4_a16,
     author = {D. V. Prokhorov},
     title = {On a {Set} {Everywhere} {Dense} in a {Lebesgue} {Space} on the {Real} {Line}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {633--635},
     publisher = {mathdoc},
     volume = {100},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a16/}
}
TY  - JOUR
AU  - D. V. Prokhorov
TI  - On a Set Everywhere Dense in a Lebesgue Space on the Real Line
JO  - Matematičeskie zametki
PY  - 2016
SP  - 633
EP  - 635
VL  - 100
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a16/
LA  - ru
ID  - MZM_2016_100_4_a16
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%T On a Set Everywhere Dense in a Lebesgue Space on the Real Line
%J Matematičeskie zametki
%D 2016
%P 633-635
%V 100
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a16/
%G ru
%F MZM_2016_100_4_a16
D. V. Prokhorov. On a Set Everywhere Dense in a Lebesgue Space on the Real Line. Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 633-635. http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a16/

[1] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR

[2] A. I. Tyulenev, Matem. zametki, 94:5 (2013), 720–732 | DOI | Zbl

[3] O. V. Besov, Matem. zametki, 96:3 (2014), 343–349 | DOI | Zbl

[4] V. D. Stepanov, Matem. zametki, 98:6 (2015), 907–922 | DOI | MR | Zbl

[5] D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, DAN, 466:5 (2016), 522–525 | Zbl

[6] G. Leoni, A First Course in Sobolev Spaces, Amer. Math. Soc., Providence, RI, 2009 | MR | Zbl

[7] R. Oinarov, J. London Math. Soc., 48 (1993), 103–116 | DOI | MR | Zbl

[8] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948

[9] B. Opic, A. Kufner, Hardy-Type Inequalities, Pitman Res. Notes in Math. Ser., Longman Sci. Tech., Harlow, 1990 | MR