Asymptotic Law of Distribution of Primes of Special Form
Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 619-622.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb{N}_0$ be the set of natural numbers whose binary expansions have an even number of $1$'s, and let $\mathbb{N}_1=\mathbb{N} \setminus \mathbb{N}_0$. In this paper, we obtain asymptotic formulas for the number of primes $p$ not exceeding $X$ and such that $p\in \mathbb{N}_i$, $p+1\in \mathbb{N}_j$, where $i$ and $j$ take values 0 and 1 independently of each other.
Mots-clés : prime
Keywords: binary expansion of a natural number.
@article{MZM_2016_100_4_a12,
     author = {K. M. Eminyan},
     title = {Asymptotic {Law} of {Distribution} of {Primes} of {Special} {Form}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {619--622},
     publisher = {mathdoc},
     volume = {100},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a12/}
}
TY  - JOUR
AU  - K. M. Eminyan
TI  - Asymptotic Law of Distribution of Primes of Special Form
JO  - Matematičeskie zametki
PY  - 2016
SP  - 619
EP  - 622
VL  - 100
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a12/
LA  - ru
ID  - MZM_2016_100_4_a12
ER  - 
%0 Journal Article
%A K. M. Eminyan
%T Asymptotic Law of Distribution of Primes of Special Form
%J Matematičeskie zametki
%D 2016
%P 619-622
%V 100
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a12/
%G ru
%F MZM_2016_100_4_a12
K. M. Eminyan. Asymptotic Law of Distribution of Primes of Special Form. Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 619-622. http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a12/

[1] A. O. Gelfond, “Sur les nombres qui ont des propriétés additives et multiplicatives données”, Acta Arith., 12 (1968), 259–265 | MR

[2] K. M. Eminyan, “O probleme delitelei Dirikhle v nekotorykh posledovatelnostyakh naturalnykh chisel”, Izv. AN SSSR. Ser. matem., 55:3 (1991), 680–686 | MR | Zbl

[3] K. M. Eminyan, “Ob odnoi binarnoi zadache”, Matem. zametki, 60:4 (1996), 634-637 | DOI | MR | Zbl

[4] C. Mauduit, J. Rivat, “Sur un problème de Gelfond: la somme des chiffres des nombres premiers”, Ann. of Math. (2), 171:3 (2010), 1591–1646 | DOI | MR | Zbl

[5] B. Green, “Three topics in additive prime number theory”, Current Developments in Math., 2007 (2009), 1–41 | DOI | MR | Zbl

[6] K. M. Eminyan, “Problema Goldbakha v prostykh chislakh s dvoichnymi razlozheniyami spetsialnogo vida”, Izv. RAN. Ser. matem., 78:1 (2014), 215–224 | DOI | MR | Zbl

[7] K. M. Eminyan, “O predstavlenii chisel s zadannymi svoistvami dvoichnogo razlozheniya summami dvukh kvadratov”, Teoriya chisel i analiz, Sbornik statei. Trudy Mezhdunarodnoi konferentsii po teorii chisel, posvyaschennoi 100-letiyu so dnya rozhdeniya akademika I. M. Vinogradova, Tr. MIAN, 207, Nauka, M., 1994, 377–382 | MR | Zbl

[8] K. M. Eminyan, “$L_1$-norma odnoi trigonometricheskoi summy”, Matem. zametki, 76:1 (2004), 133–143 | DOI | MR | Zbl

[9] K. M. Eminyan, “Otsenka drobnogo momenta odnoi trigonometricheskoi summy”, Matem. zametki, 76:2 (2004), 312–315 | DOI | MR | Zbl

[10] K. M. Eminyan, “Additivnye zadachi v naturalnykh chislakh s dvoichnymi razlozheniyami spetsialnogo vida”, Chebyshevskii sb., 12:1 (2011), 178–185 | MR | Zbl

[11] K. M. Eminyan, “O srednikh znacheniyakh funktsii $\tau_{k}(n)$ v nekotorykh posledovatelnostyakh naturalnykh chisel”, Matem. zametki, 90:3 (2011), 454–463 | DOI | Zbl

[12] K. M. Eminyan, “Obobschennaya problema delitelei s naturalnymi chislami spetsialnogo vida”, Matem. sb., 206:7 (2015), 135–144 | DOI | MR | Zbl

[13] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR