On Function Spaces for Quantum Systems with Constraints
Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 597-618.

Voir la notice de l'article provenant de la source Math-Net.Ru

Various realizations of the Hilbert state space for quantum systems with linear constraints are considered. One of the realizations is the completion of a Schwartz space with inner product differing from $L^2$. Another realization is a special class of distributions with inner product. An isomorphism between these realizations is constructed, and the properties of the operators are studied.
Keywords: quantum system with constraints, space of distributions.
@article{MZM_2016_100_4_a11,
     author = {O. Yu. Shvedov},
     title = {On {Function} {Spaces} for {Quantum} {Systems} with {Constraints}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {597--618},
     publisher = {mathdoc},
     volume = {100},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a11/}
}
TY  - JOUR
AU  - O. Yu. Shvedov
TI  - On Function Spaces for Quantum Systems with Constraints
JO  - Matematičeskie zametki
PY  - 2016
SP  - 597
EP  - 618
VL  - 100
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a11/
LA  - ru
ID  - MZM_2016_100_4_a11
ER  - 
%0 Journal Article
%A O. Yu. Shvedov
%T On Function Spaces for Quantum Systems with Constraints
%J Matematičeskie zametki
%D 2016
%P 597-618
%V 100
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a11/
%G ru
%F MZM_2016_100_4_a11
O. Yu. Shvedov. On Function Spaces for Quantum Systems with Constraints. Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 597-618. http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a11/

[1] P. Dirak, Lektsii po kvantovoi mekhanike, Mir, M., 1968

[2] H. J. Rothe, K. D. Rothe, Classical and Quantum Dynamics of Constrained Hamiltonian Systems, World Sci., Singapore, 2010 | Zbl

[3] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[4] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR

[5] V. A. Rubakov, Klassicheskie kalibrovochnye polya, URSS, M., 1999 | MR

[6] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1989 | Zbl

[7] I. Fon Neiman, Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR

[8] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | Zbl

[9] A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourao, T. Thiemann, “Quantization of diffeomorphism invariant theories of connections with local degrees of freedom”, J. Math. Phys., 36 (1995), 6456–6493 | DOI | MR | Zbl

[10] D. Giulini, D. Marolf, “A Uniqueness theorem for constraint quantization”, Class. Quant. Grav., 16 (1999), 2489–2505 | DOI | MR | Zbl

[11] O. Yu. Shvedov, “On correspondence of BRST-BFV, Dirac and refined algebraic quantizations of constrained systems”, Ann. Phys., 302 (2002), 2–21 | DOI | MR | Zbl

[12] J. Louko, E. Martinez-Pascual, “Constraint rescaling in refined algebraic quantisation: momentum constraint”, J. Math. Phys., 52 (2011), 123504 | DOI | MR | Zbl

[13] V. V. Varlamov, “Gruppovoe usrednenie dlya svobodnykh polei v terminakh gipersfericheskikh funktsii nad gruppoi de Sittera”, TMF, 164:3 (2010), 473–480 | DOI | Zbl

[14] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR

[15] O. Yu. Shvedov, “Metod kompleksnogo rostka Maslova dlya sistem so svyazyami pervogo roda”, TMF, 136:3 (2003), 418–435 | DOI | MR | Zbl

[16] O. Yu. Shvedov, “Semiclassical symmetries”, Ann. Phys., 296 (2002), 51–89 | DOI | MR | Zbl

[17] V. P. Maslov, O. Yu. Shvedov, Metod kompleksnogo rostka v zadache mnogikh chastits i kvantovoi teorii polya, URSS, M., 2000

[18] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR